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List Coloring

For graph G a list assignment for G, L, assigns each
v ∈ V (G) a list, L(v), of available colors. A proper
L-coloring of G is a proper coloring, f , of G such that
f (v) ∈ L(v) for all v ∈ V (G).

If all the lists associated with the list assignment L have
size k , we say that L is a k -assignment.
G is k -choosable if a proper L-coloring of G exists for any
k -assignment L for G. The list chromatic number of G,
χ`(G), is the smallest m for which G is m-choosable.
Clearly, χ(G) ≤ χ`(G) (e.g., 2 = χ(K2,4) < χ`(K2,4)).
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Chromatic Polynomial

The notion was introduced in 1912 by Birkhoff.

For graph G, the chromatic polynomial of G is the
function P(G,m) which is equal to the number of proper
m-colorings of G for each m ∈ N.
P(G,m) is a polynomial in m of degree |V (G)|.
For example, P(K2,l ,m) = m(m − 1)l + m(m − 1)(m − 2)l .
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The List Color Function

In 1990 Kostochka and Sidorenko considered extending
the notion of the chromatic polynomial to the list context.

If L is a list assignment for G, we use P(G,L) to denote the
number of proper L-colorings of G.
The list color function P`(G,m) is the minimum value of
P(G,L) where the minimum is taken over all possible
m-assignments L for G.
For example, P`(K2,4,2) = 0, yet P(K2,4,2) = 2.
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The First List Color Function Question

Clearly, P`(G,m) ≤ P(G,m).

Theorem (Kostochka, Sidorenko (1990); Kirov, Naimi (2016);
Kaul, M. (2021))
For each m ∈ N the following statements hold.
1. P`(Kn,m) = P(Kn,m) =

∏n−1
i=0 (m − i).

2. P`(T ,m) = P(T ,m) = m(m − 1)n−1, tree T with |V (T )| = n.
3. For n ≥ 3, P`(Cn,m) = P(Cn,m) = (m− 1)n + (−1)n(m− 1).
4. For n ≥ 3 and k ∈ N, P`(Cn ∨ Kk ,m) = P(Cn ∨ Kk ,m).

Question (Kostochka, Sidorenko (1990))
For each graph G, does there exist an NG ∈ N such that
P`(G,m) = P(G,m) whenever m ≥ NG?

The answer is yes! (Donner, 1992)
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The List Color Function Threshold

The list color function threshold of G, denoted τ(G), is
the smallest k ≥ χ(G) such that P`(G,m) = P(G,m)
whenever m ≥ k .

Clearly, χ(G) ≤ χ`(G) ≤ τ(G) <∞.

Theorem (Thomassen (2009))

For any graph G, τ(G) ≤ |V (G)|10 + 1.

Theorem (Wang, Qian, Yan (2017))

For any graph G, τ(G) ≤ (|E(G)| − 1)/ ln(1 +
√

2) + 1.
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Two List Color Function Questions

Question (Thomassen (2009))
Does there exist a constant C such that for any graph G,
τ(G)− χ`(G) ≤ C?

The list color function number of G, denoted `(G), is the
smallest t ≥ χ(G) such that P`(G, t) = P(G, t).
The list color function threshold of G, denoted τ(G), is
the smallest k ≥ χ(G) such that P`(G,m) = P(G,m)
whenever m ≥ k .

Question (Kirov, Naimi (2016))

For every graph G, does `(G) = τ(G)? In other words, if
P`(G, t) = P(G, t) for some t ≥ χ(G), does it follow that
P`(G, t + 1) = P(G, t + 1)?
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An Example

Question (Thomassen (2009))
Does there exist a constant C such that for any graph G,
τ(G)− χ`(G) ≤ C?

Consider the 3-assignment L for G = K2,12.

We know χ`(G) = 3 and
P(G,3) = 3 · 212 + 3 · 2 · 112 = 12294.
P(G,L) = 11264. So, P`(G,3) < P(G,3).
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Thomassen’s Question

Question (Thomassen (2009))
Does there exist a constant C such that for any graph G,
τ(G)− χ`(G) ≤ C?

P`(K2,12,3) < P(K2,12,3) =⇒ τ(K2,12)− χ`(K2,12) ≥ 1.
It is easy to generalize the construction...

Theorem (Kaul, Kumar, M., Rewers, Shin, To (2022+))

Suppose G = K2,l and l ≥ 16. Let q = bl/4c. Then,

τ(G) >

⌊(
q

ln(16/7)

)1/2

+ 1

⌋
.
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An Open Question

Question (Thomassen (2009))
Does there exist a constant C such that for any graph G,
τ(G)− χ`(G) ≤ C?

Theorem (Kaul, Kumar, M., Rewers, Shin, To (2022+))

τ(K2,l)− χ`(K2,l) = Ω(
√

l) as l →∞.

Theorem (Wang, Qian, Yan (2017))

For any graph G,
τ(G) ≤ (|E(G)| − 1)/ ln(1 +

√
2) + 1 ≈ 1.135|E(G)|.

Question
Let δmax (t) = max{τ(G)− χ`(G) : |E(G)| ≤ t}. What is the
asymptotic behavior of δmax (t)?
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DP-Coloring: A Different Perspective

Assume the list assignment below is L. Suppose we want
to know if there is a proper L-coloring of the graph below.

Equivalent to finding an independent set of size 4 in:
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DP-Coloring

In 2015, Dvořák and Postle introduced DP-coloring (they
called it correspondence coloring).

A cover of G is a pair H = (L,H) consisting of a graph H
and a function L : V (G)→ P(V (H)) satisfying:

(1) {L(u) : u ∈ V (G)} is a partition of V (H) of size |V (G)|;
(2) for every u ∈ V (G), the graph H[L(u)] is complete;
(3) if EH(L(u),L(v)) is nonempty, then u = v or uv ∈ E(G);
(4) if uv ∈ E(G), then EH(L(u),L(v)) is a matching.

We say H is m-fold if |L(u)| = m for each u ∈ V (G).
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DP-Coloring Continued

Suppose H = (L,H) is a cover of G. An H-coloring of G
is an independent set in H of size |V (G)|.

The DP-chromatic number of a graph G, χDP(G), is the
smallest m ∈ N such that G admits an H-coloring for every
m-fold cover H of G.

χDP(C4) > 2 = χ`(C4) = χ(C4)

In general, χ(G) ≤ χ`(G) ≤ χDP(G).
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The DP Color Function

Suppose H = (L,H) is a cover of graph G. We let
PDP(G,H) be the number of H-colorings of G.

The DP color function, denoted PDP(G,m), is the
minimum value of PDP(G,H) where the minimum is taken
over all possible m-fold covers H of G.

PDP(C4,2) = 0; whereas, P`(C4,2) = P(C4,2) = 2.

In general, PDP(G,m) ≤ P`(G,m) ≤ P(G,m).
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The DP Color Function Threshold

Is the following quantity always finite?

For any graph G let the DP color function threshold of
G, τDP(G), be the smallest k ≥ χ(G) such that
PDP(G,m) = P(G,m) whenever m ≥ k .

Theorem (Kaul, M. (2021))
Suppose G is a unicyclic graph on n vertices. For m ≥ 2, if G
contains a cycle on 2k + 2 vertices, then
PDP(G,m) = (m − 1)n − (m − 1)n−2k−2 < P(G,m).

Theorem (Dong, Yang (2022))

For graph G let `G : E(G)→ N ∪ {∞} be the function that maps
each cut-edge in G to∞ and maps each non-cut-edge
e ∈ E(G) to the length of a shortest cycle in G containing e. If
G contains an edge l such that `G(l) is even, then there exists
N ∈ N such that PDP(G,m) < P(G,m) whenever m ≥ N.
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How nice is the DP Color Function?

If P(G,m)− PDP(G,m) > 0 for infinitely many m, we let
τDP(G) =∞.

Question (Dong, Yang (2022))

Does there exist a graph G and two infinite sets of positive
integers, A and B, satisfying PDP(G,m) = P(G,m) for each
m ∈ A and PDP(G,m) < P(G,m) for each m ∈ B?

Question (Halberg, Kaul, Liu, M., Shin, Thomason (2020+))

For every graph G is there an N ∈ N and a polynomial p(m)
such that PDP(G,m) = p(m) whenever m ≥ N?

Question (Kaul, M. (2021))

If PDP(G, t) = P(G, t) for some t ≥ χ(G), does it follow that
PDP(G, t + 1) = P(G, t + 1)?
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Polynomial Question

Question (Halberg, Kaul, Liu, M., Shin, Thomason (2020+))

For every graph G is there an N ∈ N and a polynomial p(m)
such that PDP(G,m) = p(m) whenever m ≥ N?

A feedback vertex set of G is a subset of vertices whose
removal makes the resulting induced subgraph acyclic.
Consider a copy of Θ(4,2,2)...

Theorem (Halberg, Kaul, Liu, M., Shin, Thomason (2020+))

Suppose that G is a graph with a feedback vertex set of size
one. Then there exists N ∈ N and a polynomial p(m) such that
PDP(G,m) = p(m) for all m ≥ N.
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Sticky Question

Question (Kirov, Naimi (2016))

For every graph G, does `(G) = τ(G)? In other words, if
P`(G, t) = P(G, t) for some t ≥ χ(G), does it follow that
P`(G, t + 1) = P(G, t + 1)?

Question (Kaul, M. (2021))

If PDP(G, t) = P(G, t) for some t ≥ χ(G), does it follow that
PDP(G, t + 1) = P(G, t + 1)?

Theorem (Bui, Kaul, Maxfield, M., Shin, Thomason (2021+))

If G is Θ(2,3,3,3,2) or Θ(2,3,3,3,3,3,2,2), then
PDP(G,3) = P(G,3) and there is an N ∈ N such that
PDP(G,m) < P(G,m) for all m ≥ N.
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Finite DP Color Function Thresholds

Theorem (Dong, Yang (2022))

For graph G suppose `G maps each non-cut-edge e ∈ E(G) to
the length of a shortest cycle in G containing e. If G contains a
spanning tree T such that for each e ∈ E(G)− E(T ),
(i) `G(e) is odd and
(ii) e is contained in a cycle C of length `G(e) with the property
that `G(e′) < `G(e) for each e′ ∈ E(C)− (E(T ) ∪ {e}),
then τDP(G) is finite.
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The Join of a Graph and Complete Graph

Question
Given a graph G and p ∈ N, what is the value of τDP(Kp ∨G)?

The result of Dong and Yang implies τDP(Kp ∨G) <∞

Theorem (Becker, Hewitt, Kaul, Maxfield, M., Spivey,
Thomason, Wagstrom (2021+))

For any graph G and p ∈ N, τDP(Kp+1 ∨G) ≤ τDP(Kp ∨G) + 1.

Theorem (Becker, Hewitt, Kaul, Maxfield, M., Spivey,
Thomason, Wagstrom (2021+))

For any p ∈ N and n ≥ 3, τDP(Kp ∨ Cn) = 3 + p.

Recall χ(Kp ∨ C2k+2) = 2 + p and χ(Kp ∨ C2k+1) = 3 + p.

Jeffrey A. Mudrock On Chromatic Polynomials, List Color Functions, and DP Color Functions



21/23

The Join of a Graph and Complete Graph

Question
Given a graph G and p ∈ N, what is the value of τDP(Kp ∨G)?

The result of Dong and Yang implies τDP(Kp ∨G) <∞

Theorem (Becker, Hewitt, Kaul, Maxfield, M., Spivey,
Thomason, Wagstrom (2021+))

For any graph G and p ∈ N, τDP(Kp+1 ∨G) ≤ τDP(Kp ∨G) + 1.

Theorem (Becker, Hewitt, Kaul, Maxfield, M., Spivey,
Thomason, Wagstrom (2021+))

For any p ∈ N and n ≥ 3, τDP(Kp ∨ Cn) = 3 + p.

Recall χ(Kp ∨ C2k+2) = 2 + p and χ(Kp ∨ C2k+1) = 3 + p.

Jeffrey A. Mudrock On Chromatic Polynomials, List Color Functions, and DP Color Functions



21/23

The Join of a Graph and Complete Graph

Question
Given a graph G and p ∈ N, what is the value of τDP(Kp ∨G)?

The result of Dong and Yang implies τDP(Kp ∨G) <∞

Theorem (Becker, Hewitt, Kaul, Maxfield, M., Spivey,
Thomason, Wagstrom (2021+))

For any graph G and p ∈ N, τDP(Kp+1 ∨G) ≤ τDP(Kp ∨G) + 1.

Theorem (Becker, Hewitt, Kaul, Maxfield, M., Spivey,
Thomason, Wagstrom (2021+))

For any p ∈ N and n ≥ 3, τDP(Kp ∨ Cn) = 3 + p.

Recall χ(Kp ∨ C2k+2) = 2 + p and χ(Kp ∨ C2k+1) = 3 + p.

Jeffrey A. Mudrock On Chromatic Polynomials, List Color Functions, and DP Color Functions



21/23

The Join of a Graph and Complete Graph

Question
Given a graph G and p ∈ N, what is the value of τDP(Kp ∨G)?

The result of Dong and Yang implies τDP(Kp ∨G) <∞

Theorem (Becker, Hewitt, Kaul, Maxfield, M., Spivey,
Thomason, Wagstrom (2021+))

For any graph G and p ∈ N, τDP(Kp+1 ∨G) ≤ τDP(Kp ∨G) + 1.

Theorem (Becker, Hewitt, Kaul, Maxfield, M., Spivey,
Thomason, Wagstrom (2021+))

For any p ∈ N and n ≥ 3, τDP(Kp ∨ Cn) = 3 + p.

Recall χ(Kp ∨ C2k+2) = 2 + p and χ(Kp ∨ C2k+1) = 3 + p.

Jeffrey A. Mudrock On Chromatic Polynomials, List Color Functions, and DP Color Functions



22/23

The Join of a Graph and Complete Graph

Theorem (Becker et. al. (2021+))
Let M = K1 ∨G, where G is the disjoint union of cycles Cki for
i ∈ [n], with each ki ≥ 3. Then,

τDP(M) =

{
5 if ∃ distinct i , j ∈ [n] such that ki = kj = 4
4 otherwise.
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Anyone Have Questions or... Answers?

1 If P`(G, t) = P(G, t) for some t ≥ χ(G), does it follow that
P`(G, t + 1) = P(G, t + 1)?

2 Let δmax (t) = max{τ(G)− χ`(G) : |E(G)| ≤ t}. What is the
asymptotic behavior of δmax (t)?

3 Does there exist a graph G and two infinite sets of positive
integers, A and B, satisfying PDP(G,m) = P(G,m) for
each m ∈ A and PDP(G,m) < P(G,m) for each m ∈ B?

4 For every graph G is there an N ∈ N and a polynomial
p(m) such that PDP(G,m) = p(m) whenever m ≥ N?

5 Given a graph G and p ∈ N, what is the value of
τDP(Kp ∨G)?
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