On Chromatic Polynomials, List Color Functions, and DP Color Functions

Jeffrey A. Mudrock

College of Lake County
Grayslake, Illinois
May 15, 2022

Joint work with Hemanshu Kaul

Student Co-authors

- Jack Becker, CLC (undergrad), DePaul (MS).
- Vu Bui, CLC (undergrad).
- Charlie Halberg, CLC \& Utah (undergrad).
- Jade Hewitt, CLC \& IIT (undergrad).
- Akash Kumar, CLC \& UIUC (undergrad).
- Andrew Liu, Stevenson H. S., CLC \& MIT (undergrad).
- Michael Maxfield, CLC \& Wisconsin-Madison (undergrad).
- Patrick Rewers, CLC \& Purdue (undergrad), GT (MS).
- Paul Shin, Stevenson H. S., CLC \& Dartmouth (undergrad).
- David Spivey, CLC (undergrad).
- Seth Thomason, CLC \& SIU (undergrad).
- Khue To, CLC (undergrad).
- Tim Wagstrom, CLC \& UIC (undergrad), URI (PhD).

List Coloring

- For graph G a list assignment for G, L, assigns each $v \in V(G)$ a list, $L(v)$, of available colors. A proper L-coloring of G is a proper coloring, f, of G such that $f(v) \in L(v)$ for all $v \in V(G)$.

List Coloring

- For graph G a list assignment for G, L, assigns each $v \in V(G)$ a list, $L(v)$, of available colors. A proper L-coloring of G is a proper coloring, f, of G such that $f(v) \in L(v)$ for all $v \in V(G)$.

- If all the lists associated with the list assignment L have size k, we say that L is a k-assignment.

List Coloring

- For graph G a list assignment for G, L, assigns each $v \in V(G)$ a list, $L(v)$, of available colors. A proper L-coloring of G is a proper coloring, f, of G such that $f(v) \in L(v)$ for all $v \in V(G)$.

- If all the lists associated with the list assignment L have size k, we say that L is a k-assignment.
- G is k-choosable if a proper L-coloring of G exists for any k-assignment L for G. The list chromatic number of G, $\chi_{\ell}(G)$, is the smallest m for which G is m-choosable.

List Coloring

- For graph G a list assignment for G, L, assigns each $v \in V(G)$ a list, $L(v)$, of available colors. A proper L-coloring of G is a proper coloring, f, of G such that $f(v) \in L(v)$ for all $v \in V(G)$.

- If all the lists associated with the list assignment L have size k, we say that L is a k-assignment.
- G is k-choosable if a proper L-coloring of G exists for any k-assignment L for G. The list chromatic number of G, $\chi_{\ell}(G)$, is the smallest m for which G is m-choosable.
- Clearly, $\chi(G) \leq \chi_{\ell}(G)$ (e.g., $2=\chi\left(K_{2,4}\right)<\chi_{\ell}\left(K_{2,4}\right)$).

Chromatic Polynomial

- The notion was introduced in 1912 by Birkhoff.

Chromatic Polynomial

- The notion was introduced in 1912 by Birkhoff.
- For graph G, the chromatic polynomial of G is the function $P(G, m)$ which is equal to the number of proper m-colorings of G for each $m \in \mathbb{N}$.

Chromatic Polynomial

- The notion was introduced in 1912 by Birkhoff.
- For graph G, the chromatic polynomial of G is the function $P(G, m)$ which is equal to the number of proper m-colorings of G for each $m \in \mathbb{N}$.
- $P(G, m)$ is a polynomial in m of degree $|V(G)|$.

Chromatic Polynomial

- The notion was introduced in 1912 by Birkhoff.
- For graph G, the chromatic polynomial of G is the function $P(G, m)$ which is equal to the number of proper m-colorings of G for each $m \in \mathbb{N}$.
- $P(G, m)$ is a polynomial in m of degree $|V(G)|$.
- For example, $P\left(K_{2, l}, m\right)=m(m-1)^{\prime}+m(m-1)(m-2)^{\prime}$.

The List Color Function

- In 1990 Kostochka and Sidorenko considered extending the notion of the chromatic polynomial to the list context.

The List Color Function

- In 1990 Kostochka and Sidorenko considered extending the notion of the chromatic polynomial to the list context.

- If L is a list assignment for G, we use $P(G, L)$ to denote the number of proper L-colorings of G.

The List Color Function

- In 1990 Kostochka and Sidorenko considered extending the notion of the chromatic polynomial to the list context.

- If L is a list assignment for G, we use $P(G, L)$ to denote the number of proper L-colorings of G.
- The list color function $P_{\ell}(G, m)$ is the minimum value of $P(G, L)$ where the minimum is taken over all possible m-assignments L for G.

The List Color Function

- In 1990 Kostochka and Sidorenko considered extending the notion of the chromatic polynomial to the list context.

- If L is a list assignment for G, we use $P(G, L)$ to denote the number of proper L-colorings of G.
- The list color function $P_{\ell}(G, m)$ is the minimum value of $P(G, L)$ where the minimum is taken over all possible m-assignments L for G.
- For example, $P_{\ell}\left(K_{2,4}, 2\right)=0$, yet $P\left(K_{2,4}, 2\right)=2$.

The First List Color Function Question

- Clearly, $P_{\ell}(G, m) \leq P(G, m)$.

The First List Color Function Question

- Clearly, $P_{\ell}(G, m) \leq P(G, m)$.

Theorem (Kostochka, Sidorenko (1990); Kirov, Naimi (2016);
 Kaul, M. (2021))

For each $m \in \mathbb{N}$ the following statements hold.

1. $P_{\ell}\left(K_{n}, m\right)=P\left(K_{n}, m\right)=\prod_{i=0}^{n-1}(m-i)$.
2. $P_{\ell}(T, m)=P(T, m)=m(m-1)^{n-1}$, tree T with $|V(T)|=n$.
3. For $n \geq 3, P_{\ell}\left(C_{n}, m\right)=P\left(C_{n}, m\right)=(m-1)^{n}+(-1)^{n}(m-1)$.
4. For $n \geq 3$ and $k \in \mathbb{N}, P_{\ell}\left(C_{n} \vee K_{k}, m\right)=P\left(C_{n} \vee K_{k}, m\right)$.

The First List Color Function Question

- Clearly, $P_{\ell}(G, m) \leq P(G, m)$.

Theorem (Kostochka, Sidorenko (1990); Kirov, Naimi (2016); Kaul, M. (2021))

For each $m \in \mathbb{N}$ the following statements hold.

1. $P_{\ell}\left(K_{n}, m\right)=P\left(K_{n}, m\right)=\prod_{i=0}^{n-1}(m-i)$.
2. $P_{\ell}(T, m)=P(T, m)=m(m-1)^{n-1}$, tree T with $|V(T)|=n$.
3. For $n \geq 3, P_{\ell}\left(C_{n}, m\right)=P\left(C_{n}, m\right)=(m-1)^{n}+(-1)^{n}(m-1)$.
4. For $n \geq 3$ and $k \in \mathbb{N}, P_{\ell}\left(C_{n} \vee K_{k}, m\right)=P\left(C_{n} \vee K_{k}, m\right)$.

Question (Kostochka, Sidorenko (1990))

For each graph G, does there exist an $N_{G} \in \mathbb{N}$ such that $P_{\ell}(G, m)=P(G, m)$ whenever $m \geq N_{G}$?

The First List Color Function Question

- Clearly, $P_{\ell}(G, m) \leq P(G, m)$.

Theorem (Kostochka, Sidorenko (1990); Kirov, Naimi (2016); Kaul, M. (2021))

For each $m \in \mathbb{N}$ the following statements hold.

1. $P_{\ell}\left(K_{n}, m\right)=P\left(K_{n}, m\right)=\prod_{i=0}^{n-1}(m-i)$.
2. $P_{\ell}(T, m)=P(T, m)=m(m-1)^{n-1}$, tree T with $|V(T)|=n$.
3. For $n \geq 3, P_{\ell}\left(C_{n}, m\right)=P\left(C_{n}, m\right)=(m-1)^{n}+(-1)^{n}(m-1)$.
4. For $n \geq 3$ and $k \in \mathbb{N}, P_{\ell}\left(C_{n} \vee K_{k}, m\right)=P\left(C_{n} \vee K_{k}, m\right)$.

Question (Kostochka, Sidorenko (1990))

For each graph G, does there exist an $N_{G} \in \mathbb{N}$ such that $P_{\ell}(G, m)=P(G, m)$ whenever $m \geq N_{G}$?

- The answer is yes! (Donner, 1992)

The List Color Function Threshold

- The list color function threshold of G, denoted $\tau(G)$, is the smallest $k \geq \chi(G)$ such that $P_{\ell}(G, m)=P(G, m)$ whenever $m \geq k$.

The List Color Function Threshold

- The list color function threshold of G, denoted $\tau(G)$, is the smallest $k \geq \chi(G)$ such that $P_{\ell}(G, m)=P(G, m)$ whenever $m \geq k$.
- Clearly, $\chi(G) \leq \chi_{\ell}(G) \leq \tau(G)<\infty$.

The List Color Function Threshold

- The list color function threshold of G, denoted $\tau(G)$, is the smallest $k \geq \chi(G)$ such that $P_{\ell}(G, m)=P(G, m)$ whenever $m \geq k$.
- Clearly, $\chi(G) \leq \chi_{\ell}(G) \leq \tau(G)<\infty$.

Theorem (Thomassen (2009))
For any graph $G, \tau(G) \leq|V(G)|^{10}+1$.

The List Color Function Threshold

- The list color function threshold of G, denoted $\tau(G)$, is the smallest $k \geq \chi(G)$ such that $P_{\ell}(G, m)=P(G, m)$ whenever $m \geq k$.
- Clearly, $\chi(G) \leq \chi_{\ell}(G) \leq \tau(G)<\infty$.

Theorem (Thomassen (2009))
For any graph $G, \tau(G) \leq|V(G)|^{10}+1$.

Theorem (Wang, Qian, Yan (2017))

For any graph $G, \tau(G) \leq(|E(G)|-1) / \ln (1+\sqrt{2})+1$.

Two List Color Function Questions

Question (Thomassen (2009))
Does there exist a constant C such that for any graph G, $\tau(G)-\chi_{\ell}(G) \leq C$?

Two List Color Function Questions

Question (Thomassen (2009))

Does there exist a constant C such that for any graph G, $\tau(G)-\chi_{\ell}(G) \leq C ?$

The list color function number of G, denoted $\ell(G)$, is the smallest $t \geq \chi(G)$ such that $P_{\ell}(G, t)=P(G, t)$.

Two List Color Function Questions

Question (Thomassen (2009))

Does there exist a constant C such that for any graph G, $\tau(G)-\chi_{\ell}(G) \leq C$?

The list color function number of G, denoted $\ell(G)$, is the smallest $t \geq \chi(G)$ such that $P_{\ell}(G, t)=P(G, t)$.
The list color function threshold of G, denoted $\tau(G)$, is the smallest $k \geq \chi(G)$ such that $P_{\ell}(G, m)=P(G, m)$ whenever $m \geq k$.

Two List Color Function Questions

Question (Thomassen (2009))

Does there exist a constant C such that for any graph G, $\tau(G)-\chi_{\ell}(G) \leq C$?

The list color function number of G, denoted $\ell(G)$, is the smallest $t \geq \chi(G)$ such that $P_{\ell}(G, t)=P(G, t)$.
The list color function threshold of G, denoted $\tau(G)$, is the smallest $k \geq \chi(G)$ such that $P_{\ell}(G, m)=P(G, m)$ whenever $m \geq k$.

Question (Kirov, Naimi (2016))

For every graph G, does $\ell(G)=\tau(G)$? In other words, if
$P_{\ell}(G, t)=P(G, t)$ for some $t \geq \chi(G)$, does it follow that
$P_{\ell}(G, t+1)=P(G, t+1) ?$

An Example

Question (Thomassen (2009))

Does there exist a constant C such that for any graph G, $\tau(G)-\chi_{\ell}(G) \leq C$?

An Example

Question (Thomassen (2009))

Does there exist a constant C such that for any graph G, $\tau(G)-\chi_{\ell}(G) \leq C$?

Consider the 3-assignment L for $G=K_{2,12}$.

Jeffrey A. Mudrock

An Example

Question (Thomassen (2009))

Does there exist a constant C such that for any graph G, $\tau(G)-\chi_{\ell}(G) \leq C$?

Consider the 3-assignment L for $G=K_{2,12}$.

We know $\chi_{\ell}(G)=3$ and
$P(G, 3)=3 \cdot 2^{12}+3 \cdot 2 \cdot 1^{12}=12294$.

An Example

Question (Thomassen (2009))

Does there exist a constant C such that for any graph G, $\tau(G)-\chi_{\ell}(G) \leq C$?

Consider the 3-assignment L for $G=K_{2,12}$.

We know $\chi_{\ell}(G)=3$ and
$P(G, 3)=3 \cdot 2^{12}+3 \cdot 2 \cdot 1^{12}=12294$.
$P(G, L)=11264$. So, $P_{\ell}(G, 3)<P(G, 3)$.

Thomassen's Question

Question (Thomassen (2009))

Does there exist a constant C such that for any graph G, $\tau(G)-\chi_{\ell}(G) \leq C$?

Thomassen's Question

Question (Thomassen (2009))

Does there exist a constant C such that for any graph G, $\tau(G)-\chi_{\ell}(G) \leq C$?

$$
P_{\ell}\left(K_{2,12}, 3\right)<P\left(K_{2,12}, 3\right) \Longrightarrow \tau\left(K_{2,12}\right)-\chi_{\ell}\left(K_{2,12}\right) \geq 1 .
$$

Thomassen's Question

Question (Thomassen (2009))

Does there exist a constant C such that for any graph G, $\tau(G)-\chi_{\ell}(G) \leq C ?$
$P_{\ell}\left(K_{2,12}, 3\right)<P\left(K_{2,12}, 3\right) \Longrightarrow \tau\left(K_{2,12}\right)-\chi_{\ell}\left(K_{2,12}\right) \geq 1$. It is easy to generalize the construction...

$\{1,2,3,4,5,6,7,8,11,12\}$

Thomassen's Question

Question (Thomassen (2009))

Does there exist a constant C such that for any graph G, $\tau(G)-\chi_{\ell}(G) \leq C$?

$$
P_{\ell}\left(K_{2,12}, 3\right)<P\left(K_{2,12}, 3\right) \Longrightarrow \tau\left(K_{2,12}\right)-\chi_{\ell}\left(K_{2,12}\right) \geq 1 .
$$

It is easy to generalize the construction...

$$
\{1,2,3,4,5,6,7,8,9,10\}
$$

$$
\{1,2,3,4,5,6,7,8,11,12\}
$$

Theorem (Kaul, Kumar, M., Rewers, Shin, To (2022+))
Suppose $G=K_{2, I}$ and $I \geq 16$. Let $q=\lfloor I / 4\rfloor$. Then,

$$
\tau(G)>\left\lfloor\left(\frac{q}{\ln (16 / 7)}\right)^{1 / 2}+1\right\rfloor
$$

An Open Question

Question (Thomassen (2009))

Does there exist a constant C such that for any graph G, $\tau(G)-\chi_{\ell}(G) \leq C$?

An Open Question

Question (Thomassen (2009))

Does there exist a constant C such that for any graph G, $\tau(G)-\chi_{\ell}(G) \leq C$?

Theorem (Kaul, Kumar, M., Rewers, Shin, To (2022+))
$\tau\left(K_{2, I}\right)-\chi_{\ell}\left(K_{2, I}\right)=\Omega(\sqrt{I})$ as $I \rightarrow \infty$.

An Open Question

Question (Thomassen (2009))

Does there exist a constant C such that for any graph G, $\tau(G)-\chi_{\ell}(G) \leq C$?

Theorem (Kaul, Kumar, M., Rewers, Shin, To (2022+))
$\tau\left(K_{2, I}\right)-\chi_{\ell}\left(K_{2, I}\right)=\Omega(\sqrt{I})$ as $I \rightarrow \infty$.

Theorem (Wang, Qian, Yan (2017))

For any graph G, $\tau(G) \leq(|E(G)|-1) / \ln (1+\sqrt{2})+1 \approx 1.135|E(G)|$.

An Open Question

Question (Thomassen (2009))

Does there exist a constant C such that for any graph G, $\tau(G)-\chi_{\ell}(G) \leq C$?

Theorem (Kaul, Kumar, M., Rewers, Shin, To (2022+))
$\tau\left(K_{2, I}\right)-\chi_{\ell}\left(K_{2, I}\right)=\Omega(\sqrt{I})$ as $I \rightarrow \infty$.

Theorem (Wang, Qian, Yan (2017))

For any graph G,

$$
\tau(G) \leq(|E(G)|-1) / \ln (1+\sqrt{2})+1 \approx 1.135|E(G)|
$$

Question

Let $\delta_{\max }(t)=\max \left\{\tau(G)-\chi_{\ell}(G):|E(G)| \leq t\right\}$. What is the asymptotic behavior of $\delta_{\max }(t)$?

DP-Coloring: A Different Perspective

- Assume the list assignment below is L. Suppose we want to know if there is a proper L-coloring of the graph below.

DP-Coloring: A Different Perspective

- Assume the list assignment below is L. Suppose we want to know if there is a proper L-coloring of the graph below.

- Equivalent to finding an independent set of size 4 in:

Jeffrey A. Mudrock

DP-Coloring

- In 2015, Dvořák and Postle introduced DP-coloring (they called it correspondence coloring).

DP-Coloring

- In 2015, Dvořák and Postle introduced DP-coloring (they called it correspondence coloring).
- A cover of G is a pair $\mathcal{H}=(L, H)$ consisting of a graph H and a function $L: V(G) \rightarrow \mathcal{P}(V(H))$ satisfying:
(1) $\{L(u): u \in V(G)\}$ is a partition of $V(H)$ of size $|V(G)|$;
(2) for every $u \in V(G)$, the graph $H[L(u)]$ is complete;
(3) if $E_{H}(L(u), L(v))$ is nonempty, then $u=v$ or $u v \in E(G)$;
(4) if $u v \in E(G)$, then $E_{H}(L(u), L(v))$ is a matching.

DP-Coloring

- In 2015, Dvořák and Postle introduced DP-coloring (they called it correspondence coloring).
- A cover of G is a pair $\mathcal{H}=(L, H)$ consisting of a graph H and a function $L: V(G) \rightarrow \mathcal{P}(V(H))$ satisfying:
(1) $\{L(u): u \in V(G)\}$ is a partition of $V(H)$ of size $|V(G)|$;
(2) for every $u \in V(G)$, the graph $H[L(u)]$ is complete;
(3) if $E_{H}(L(u), L(v))$ is nonempty, then $u=v$ or $u v \in E(G)$;
(4) if $u v \in E(G)$, then $E_{H}(L(u), L(v))$ is a matching.

- We say \mathcal{H} is m-fold if $|L(u)|=m$ for each $u \in V(G)$.

DP-Coloring Continued

- Suppose $\mathcal{H}=(L, H)$ is a cover of G. An \mathcal{H}-coloring of G is an independent set in H of size $|V(G)|$.

DP-Coloring Continued

- Suppose $\mathcal{H}=(L, H)$ is a cover of G. An \mathcal{H}-coloring of G is an independent set in H of size $|V(G)|$.
- The DP-chromatic number of a graph $G, \chi_{D P}(G)$, is the smallest $m \in \mathbb{N}$ such that G admits an \mathcal{H}-coloring for every m-fold cover \mathcal{H} of G.

DP-Coloring Continued

- Suppose $\mathcal{H}=(L, H)$ is a cover of G. An \mathcal{H}-coloring of G is an independent set in H of size $|V(G)|$.
- The DP-chromatic number of a graph $G, \chi_{D P}(G)$, is the smallest $m \in \mathbb{N}$ such that G admits an \mathcal{H}-coloring for every m-fold cover \mathcal{H} of G.
- $\chi_{D P}\left(C_{4}\right)>2=\chi_{\ell}\left(C_{4}\right)=\chi\left(C_{4}\right)$

DP-Coloring Continued

- Suppose $\mathcal{H}=(L, H)$ is a cover of G. An \mathcal{H}-coloring of G is an independent set in H of size $|V(G)|$.
- The DP-chromatic number of a graph $G, \chi_{D P}(G)$, is the smallest $m \in \mathbb{N}$ such that G admits an \mathcal{H}-coloring for every m-fold cover \mathcal{H} of G.
- $\chi_{D P}\left(C_{4}\right)>2=\chi_{\ell}\left(C_{4}\right)=\chi\left(C_{4}\right)$

- In general, $\chi(G) \leq \chi_{\ell}(G) \leq \chi_{D P}(G)$.

The DP Color Function

- Suppose $\mathcal{H}=(L, H)$ is a cover of graph G. We let $P_{D P}(G, \mathcal{H})$ be the number of \mathcal{H}-colorings of G.

The DP Color Function

- Suppose $\mathcal{H}=(L, H)$ is a cover of graph G. We let $P_{D P}(G, \mathcal{H})$ be the number of \mathcal{H}-colorings of G.
- The DP color function, denoted $P_{D P}(G, m)$, is the minimum value of $P_{D P}(G, \mathcal{H})$ where the minimum is taken over all possible m-fold covers \mathcal{H} of G.

The DP Color Function

- Suppose $\mathcal{H}=(L, H)$ is a cover of graph G. We let $P_{D P}(G, \mathcal{H})$ be the number of \mathcal{H}-colorings of G.
- The DP color function, denoted $P_{D P}(G, m)$, is the minimum value of $P_{D P}(G, \mathcal{H})$ where the minimum is taken over all possible m-fold covers \mathcal{H} of G.
- $P_{D P}\left(C_{4}, 2\right)=0$; whereas, $P_{\ell}\left(C_{4}, 2\right)=P\left(C_{4}, 2\right)=2$.

The DP Color Function

- Suppose $\mathcal{H}=(L, H)$ is a cover of graph G. We let $P_{D P}(G, \mathcal{H})$ be the number of \mathcal{H}-colorings of G.
- The DP color function, denoted $P_{D P}(G, m)$, is the minimum value of $P_{D P}(G, \mathcal{H})$ where the minimum is taken over all possible m-fold covers \mathcal{H} of G.
- $P_{D P}\left(C_{4}, 2\right)=0$; whereas, $P_{\ell}\left(C_{4}, 2\right)=P\left(C_{4}, 2\right)=2$.

- In general, $P_{D P}(G, m) \leq P_{\ell}(G, m) \leq P(G, m)$.

The DP Color Function Threshold

- Is the following quantity always finite?

The DP Color Function Threshold

- Is the following quantity always finite?
- For any graph G let the DP color function threshold of $G, \tau_{D P}(G)$, be the smallest $k \geq \chi(G)$ such that $P_{D P}(G, m)=P(G, m)$ whenever $m \geq k$.

The DP Color Function Threshold

- Is the following quantity always finite?
- For any graph G let the DP color function threshold of $G, \tau_{D P}(G)$, be the smallest $k \geq \chi(G)$ such that $P_{D P}(G, m)=P(G, m)$ whenever $m \geq k$.

Theorem (Kaul, M. (2021))

Suppose G is a unicyclic graph on n vertices. For $m \geq 2$, if G contains a cycle on $2 k+2$ vertices, then $P_{D P}(G, m)=(m-1)^{n}-(m-1)^{n-2 k-2}<P(G, m)$.

The DP Color Function Threshold

- Is the following quantity always finite?
- For any graph G let the DP color function threshold of $G, \tau_{D P}(G)$, be the smallest $k \geq \chi(G)$ such that $P_{D P}(G, m)=P(G, m)$ whenever $m \geq k$.

Theorem (Kaul, M. (2021))

Suppose G is a unicyclic graph on n vertices. For $m \geq 2$, if G contains a cycle on $2 k+2$ vertices, then
$P_{D P}(G, m)=(m-1)^{n}-(m-1)^{n-2 k-2}<P(G, m)$.

Theorem (Dong, Yang (2022))

For graph G let $\ell_{G}: E(G) \rightarrow \mathbb{N} \cup\{\infty\}$ be the function that maps each cut-edge in G to ∞ and maps each non-cut-edge $e \in E(G)$ to the length of a shortest cycle in G containing e. If G contains an edge I such that $\ell_{G}(I)$ is even, then there exists $N \in \mathbb{N}$ such that $P_{D P}(G, m)<P(G, m)$ whenever $m \geq N$.

How nice is the DP Color Function?

- If $P(G, m)-P_{D P}(G, m)>0$ for infinitely many m, we let $\tau_{D P}(G)=\infty$.

How nice is the DP Color Function?

- If $P(G, m)-P_{D P}(G, m)>0$ for infinitely many m, we let $\tau_{D P}(G)=\infty$.

Question (Dong, Yang (2022))

Does there exist a graph G and two infinite sets of positive integers, A and B, satisfying $P_{D P}(G, m)=P(G, m)$ for each $m \in A$ and $P_{D P}(G, m)<P(G, m)$ for each $m \in B$?

How nice is the DP Color Function?

- If $P(G, m)-P_{D P}(G, m)>0$ for infinitely many m, we let $\tau_{D P}(G)=\infty$.

Question (Dong, Yang (2022))

Does there exist a graph G and two infinite sets of positive integers, A and B, satisfying $P_{D P}(G, m)=P(G, m)$ for each $m \in A$ and $P_{D P}(G, m)<P(G, m)$ for each $m \in B$?

Question (Halberg, Kaul, Liu, M., Shin, Thomason (2020+))

For every graph G is there an $N \in \mathbb{N}$ and a polynomial $p(m)$ such that $P_{D P}(G, m)=p(m)$ whenever $m \geq N$?

How nice is the DP Color Function?

- If $P(G, m)-P_{D P}(G, m)>0$ for infinitely many m, we let $\tau_{D P}(G)=\infty$.

Question (Dong, Yang (2022))

Does there exist a graph G and two infinite sets of positive integers, A and B, satisfying $P_{D P}(G, m)=P(G, m)$ for each $m \in A$ and $P_{D P}(G, m)<P(G, m)$ for each $m \in B$?

Question (Halberg, Kaul, Liu, M., Shin, Thomason (2020+))
For every graph G is there an $N \in \mathbb{N}$ and a polynomial $p(m)$ such that $P_{D P}(G, m)=p(m)$ whenever $m \geq N$?

Question (Kaul, M. (2021))
If $P_{D P}(G, t)=P(G, t)$ for some $t \geq \chi(G)$, does it follow that $P_{D P}(G, t+1)=P(G, t+1) ?$

Polynomial Question

Question (Halberg, Kaul, Liu, M., Shin, Thomason (2020+))

For every graph G is there an $N \in \mathbb{N}$ and a polynomial $p(m)$ such that $P_{D P}(G, m)=p(m)$ whenever $m \geq N$?

Polynomial Question

Question (Halberg, Kaul, Liu, M., Shin, Thomason (2020+))

For every graph G is there an $N \in \mathbb{N}$ and a polynomial $p(m)$ such that $P_{D P}(G, m)=p(m)$ whenever $m \geq N$?

A feedback vertex set of G is a subset of vertices whose removal makes the resulting induced subgraph acyclic. Consider a copy of $\Theta(4,2,2)$...

Polynomial Question

Question (Halberg, Kaul, Liu, M., Shin, Thomason (2020+))

For every graph G is there an $N \in \mathbb{N}$ and a polynomial $p(m)$ such that $P_{D P}(G, m)=p(m)$ whenever $m \geq N$?

A feedback vertex set of G is a subset of vertices whose removal makes the resulting induced subgraph acyclic. Consider a copy of $\Theta(4,2,2) \ldots$

Polynomial Question

Question (Halberg, Kaul, Liu, M., Shin, Thomason (2020+))

For every graph G is there an $N \in \mathbb{N}$ and a polynomial $p(m)$ such that $P_{D P}(G, m)=p(m)$ whenever $m \geq N$?

A feedback vertex set of G is a subset of vertices whose removal makes the resulting induced subgraph acyclic.
Consider a copy of $\Theta(4,2,2)$...

Theorem (Halberg, Kaul, Liu, M., Shin, Thomason (2020+))

Suppose that G is a graph with a feedback vertex set of size one. Then there exists $N \in \mathbb{N}$ and a polynomial $p(m)$ such that $P_{D P}(G, m)=p(m)$ for all $m \geq N$.

Sticky Question

Question (Kirov, Naimi (2016))

For every graph G, does $\ell(G)=\tau(G)$? In other words, if $P_{\ell}(G, t)=P(G, t)$ for some $t \geq \chi(G)$, does it follow that $P_{\ell}(G, t+1)=P(G, t+1)$?

Sticky Question

Question (Kirov, Naimi (2016))

For every graph G, does $\ell(G)=\tau(G)$? In other words, if $P_{\ell}(G, t)=P(G, t)$ for some $t \geq \chi(G)$, does it follow that $P_{\ell}(G, t+1)=P(G, t+1)$?

Question (Kaul, M. (2021))

If $P_{D P}(G, t)=P(G, t)$ for some $t \geq \chi(G)$, does it follow that $P_{D P}(G, t+1)=P(G, t+1) ?$

Sticky Question

Question (Kirov, Naimi (2016))

For every graph G, does $\ell(G)=\tau(G)$? In other words, if $P_{\ell}(G, t)=P(G, t)$ for some $t \geq \chi(G)$, does it follow that $P_{\ell}(G, t+1)=P(G, t+1)$?

Question (Kaul, M. (2021))
If $P_{D P}(G, t)=P(G, t)$ for some $t \geq \chi(G)$, does it follow that $P_{D P}(G, t+1)=P(G, t+1) ?$

Theorem (Bui, Kaul, Maxfield, M., Shin, Thomason (2021+))
If G is $\Theta(2,3,3,3,2)$ or $\Theta(2,3,3,3,3,3,2,2)$, then
$P_{D P}(G, 3)=P(G, 3)$ and there is an $N \in \mathbb{N}$ such that $P_{D P}(G, m)<P(G, m)$ for all $m \geq N$.

Finite DP Color Function Thresholds

Theorem (Dong, Yang (2022))

For graph G suppose ℓ_{G} maps each non-cut-edge $e \in E(G)$ to the length of a shortest cycle in G containing e. If G contains a spanning tree T such that for each $e \in E(G)-E(T)$,
(i) $\ell_{G}(e)$ is odd and
(ii) e is contained in a cycle C of length $\ell_{G}(e)$ with the property that $\ell_{G}\left(e^{\prime}\right)<\ell_{G}(e)$ for each $e^{\prime} \in E(C)-(E(T) \cup\{e\})$, then $\tau_{D P}(G)$ is finite.

Finite DP Color Function Thresholds

Theorem (Dong, Yang (2022))

For graph G suppose ℓ_{G} maps each non-cut-edge $e \in E(G)$ to the length of a shortest cycle in G containing e. If G contains a spanning tree T such that for each $e \in E(G)-E(T)$,
(i) $\ell_{G}(e)$ is odd and
(ii) e is contained in a cycle C of length $\ell_{G}(e)$ with the property that $\ell_{G}\left(e^{\prime}\right)<\ell_{G}(e)$ for each $e^{\prime} \in E(C)-(E(T) \cup\{e\})$, then $\tau_{D P}(G)$ is finite.

Jeffrey A. Mudrock

The Join of a Graph and Complete Graph

Question

Given a graph G and $p \in \mathbb{N}$, what is the value of $\tau_{D P}\left(K_{p} \vee G\right)$?

The Join of a Graph and Complete Graph

Question

Given a graph G and $p \in \mathbb{N}$, what is the value of $\tau_{D P}\left(K_{p} \vee G\right)$?
The result of Dong and Yang implies $\tau_{D P}\left(K_{p} \vee G\right)<\infty$

The Join of a Graph and Complete Graph

Question

Given a graph G and $p \in \mathbb{N}$, what is the value of $\tau_{D P}\left(K_{p} \vee G\right)$?
The result of Dong and Yang implies $\tau_{D P}\left(K_{p} \vee G\right)<\infty$

```
Theorem (Becker, Hewitt, Kaul, Maxfield, M., Spivey, Thomason, Wagstrom (2021+))
For any graph \(G\) and \(p \in \mathbb{N}, \tau_{D P}\left(K_{p+1} \vee G\right) \leq \tau_{D P}\left(K_{p} \vee G\right)+1\).
```


The Join of a Graph and Complete Graph

Question

Given a graph G and $p \in \mathbb{N}$, what is the value of $\tau_{D P}\left(K_{p} \vee G\right)$?
The result of Dong and Yang implies $\tau_{D P}\left(K_{p} \vee G\right)<\infty$

> Theorem (Becker, Hewitt, Kaul, Maxfield, M., Spivey, Thomason, Wagstrom $(2021+))$
> For any graph G and $p \in \mathbb{N}, \tau_{D P}\left(K_{p+1} \vee G\right) \leq \tau_{D P}\left(K_{p} \vee G\right)+1$.

Theorem (Becker, Hewitt, Kaul, Maxfield, M., Spivey, Thomason, Wagstrom (2021+))

For any $p \in \mathbb{N}$ and $n \geq 3, \tau_{D P}\left(K_{p} \vee C_{n}\right)=3+p$.
Recall $\chi\left(K_{p} \vee C_{2 k+2}\right)=2+p$ and $\chi\left(K_{p} \vee C_{2 k+1}\right)=3+p$.

The Join of a Graph and Complete Graph

Theorem (Becker et. al. (2021+))

Let $M=K_{1} \vee G$, where G is the disjoint union of cycles $C_{k_{i}}$ for $i \in[n]$, with each $k_{i} \geq 3$. Then,

$$
\tau_{D P}(M)= \begin{cases}5 & \text { if } \exists \text { distinct } i, j \in[n] \text { such that } k_{i}=k_{j}=4 \\ 4 & \text { otherwise } .\end{cases}
$$

The Join of a Graph and Complete Graph

Theorem (Becker et. al. (2021+))

Let $M=K_{1} \vee G$, where G is the disjoint union of cycles $C_{k_{i}}$ for $i \in[n]$, with each $k_{i} \geq 3$. Then,

$$
\tau_{D P}(M)= \begin{cases}5 & \text { if } \exists \text { distinct } i, j \in[n] \text { such that } k_{i}=k_{j}=4 \\ 4 & \text { otherwise } .\end{cases}
$$

Anyone Have Questions or... Answers?

(1) If $P_{\ell}(G, t)=P(G, t)$ for some $t \geq \chi(G)$, does it follow that $P_{\ell}(G, t+1)=P(G, t+1) ?$
(2) Let $\delta_{\max }(t)=\max \left\{\tau(G)-\chi_{\ell}(G):|E(G)| \leq t\right\}$. What is the asymptotic behavior of $\delta_{\max }(t)$?
(3) Does there exist a graph G and two infinite sets of positive integers, A and B, satisfying $P_{D P}(G, m)=P(G, m)$ for each $m \in A$ and $P_{D P}(G, m)<P(G, m)$ for each $m \in B$?
(4) For every graph G is there an $N \in \mathbb{N}$ and a polynomial $p(m)$ such that $P_{D P}(G, m)=p(m)$ whenever $m \geq N$?
(5) Given a graph G and $p \in \mathbb{N}$, what is the value of $\tau_{D P}\left(K_{p} \vee G\right) ?$

