ILLINOIS INSTITUTE ${ }^{\circ}{ }^{\circ}$
OF TECHNOLOGY

DP-Coloring the Cartesian Product of Graphs

Hemanshu Kaul, Jeffrey Mudrock, Gunjan Sharma, and Quinn Stratton

1. Preliminaries

An important problem in graph theory is conflictfree allocation of limited resources. Suppose we want to assign time-slots (a limited resource) to committees so that committees having a common member get different time-slots (the conflict relationship). A proper k-coloring of a graph G is a function $f: V(G) \rightarrow[k]$ such that $f(u) \neq f(v)$ if $u v \in E(G)$.

- The chromatic number $\chi(G)$ is the smallest k so that there exists a proper k-coloring of G.
- The coloring number $\operatorname{col}(G)$ is the smallest k such that there exists an ordering of the vertices of G where each vertex has at most $k-1$ neighbors preceding it. This gives a classic greedy upper bound on $\chi(G)$.

A list assignment for G assigns a list of available colors to each vertex in $V(G)$.

- A proper coloring f is called an L-coloring if $f(v) \in L(v)$ for each $v \in V(G)$. If $|L(v)|=k$ for all $v \in V(G)$ we call L a k-assignment.
- The list chromatic number $\chi_{\ell}(G)$ is the least k such that G admits an L-coloring for every k-assignment L.
The example below shows that $\chi_{\ell}\left(K_{2,4}\right)>2$

Note: $\chi(G) \leq \chi_{\ell}(G) \leq \operatorname{col}(G) \leq \Delta(G)+1$.

COVERS

A cover of a graph G is a pair $\mathcal{H}=(L, H)$, where H is a graph and L is function $L: V(G) \rightarrow \mathcal{P}(V(H))$ such that the following conditions hold:

- The sets $\{L(v): v \in V(G)\}$ form a partition of $V(H)$ and $H[L(v)]$ is a clique for each $v \in$ $V(G)$;
- If $E_{H}(L(u), L(v)) \neq \emptyset$, then $u=v$ or $u v \in E(G)$, and if $u v \in E(G)$, then $E_{H}(L(u), L(v))$ is a matching.

DP-COLORING

Intuitively, DP-coloring considers the worst-case scenario of how many colors we need in the lists if we no longer can identify the names of the colors. A cover $\mathcal{H}=(L, H)$ of G is k-fold if $|L(v)|=k$ for each $v \in V(G)$. An \mathcal{H}-coloring is an independent set in H of size $|V(G)|$.

$K_{1,3}$
 a 2-fold cover of $K_{1,3}$

- The DP-chromatic number $\chi_{D P}(G)$ is the smallest k such that G admits an \mathcal{H}-coloring for every k-fold cover \mathcal{H} of G.
- Let $P_{D P}(G, \mathcal{H})$ be the number of \mathcal{H} - colorings of G. Then the DP-color function $P_{D P}(G, m)$ is the minimum value of $P_{D P}(G, \mathcal{H})$ over all m-fold covers \mathcal{H} of G. For example, $P_{D P}\left(K_{1,3}, 2\right)=2$
Given a graph G and a k-assignment L, we can construct a cover \mathcal{H} such that G admits an L coloring if and only if G admits an \mathcal{H}-coloring.

corresponding 2 -fold cover of K_{3}
$\chi(G) \leq \chi_{\ell}(G) \leq \chi_{D P}(G) \leq \operatorname{col}(G) \leq \Delta(G)+1$
Below are two distinct 2-fold covers of the 4 -cycle C_{4}. Note that C_{4} admits an \mathcal{H}_{1}-coloring but not an \mathcal{H}_{2}-coloring. In particular, $3 \leq \chi_{D P}\left(C_{4}\right) \leq$ $\Delta\left(C_{4}\right)+1=3$. This implies $\chi_{D P}\left(C_{4}\right)=3$.

List Coloring the Cartesian Products of Graphs

The Cartesian product $G \square H$ of graphs G and H is a graph such that,

- $V(G \square H)$ is the Cartesian product of sets $V(G)$ and $V(H)$
- $\left(v_{1}, u_{1}\right)\left(v_{2}, u_{2}\right) \in E(G \square H) \Longleftrightarrow$ either $v_{1}=v_{2}$ and $u_{1} u_{2} \in E(H)$ or $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(G)$

$C_{4} \square P_{2}$

$C_{4} \square P_{2}$

Theorem 1 (Borowiecki, et al. 2006). $\chi_{\ell}(G \square H) \leq \min \left\{\chi_{\ell}(G)+\operatorname{col}(H), \chi_{\ell}(H)+\operatorname{col}(G)\right\}-1$.

DP-COLORING THE CARTESIAN PRODUCTS OF GRaphS

Our first result is to generalize the above theorem to the context of DP-coloring.
Theorem 2. $\chi_{D P}(G \square H) \leq \min \left\{\chi_{D P}(G)+\operatorname{col}(H), \chi_{D P}(H)+\operatorname{col}(G)\right\}-1$.

Our next result shows that bound above is sharp when one of the factors is a complete bipartite graph
Theorem 3. $\chi_{D P}\left(G \square K_{k, t}\right)=\chi_{D P}(G)+k$ where $t \geq\left(P_{D P}\left(G, k+\chi_{D P}(G)-1\right)\right)^{k}$

