1. PRELIMINARIES

An important problem in graph theory is conflictfree allocation of limited resources. Suppose we want to assign time-slots (a limited resource) to committees so that committees having a common member get different time-slots (the conflict relationship). A proper k-coloring of a graph G is a function $f: V(G) \to [k]$ such that $f(u) \neq f(v)$ if $uv \in E(G).$

- The chromatic number $\chi(G)$ is the smallest k so that there exists a proper k-coloring of G.
- The coloring number col(G) is the smallest k such that there exists an ordering of the vertices of *G* where each vertex has at most k-1neighbors preceding it. This gives a classic greedy upper bound on $\chi(G)$.

$$col(K_{2,4}) = 3$$

$$\chi(K_{2,4}) = 2$$

$$K_{2,4}$$

A *list assignment* for G assigns a list of available colors to each vertex in V(G).

- A proper coloring *f* is called an *L*-coloring if $f(v) \in L(v)$ for each $v \in V(G)$. If |L(v)| = kfor all $v \in V(G)$ we call L a k-assignment.
- The list chromatic number $\chi_{\ell}(G)$ is the least k such that *G* admits an *L*-coloring for every *k*-assignment *L*.

The example below shows that $\chi_{\ell}(K_{2,4}) > 2$.

 $\{1,3\}\ \{1,4\}\ \{2,3\}\ \{2,4\}$

 $\{3, 4\}$

Note: $\chi(G) \le \chi_{\ell}(G) \le \operatorname{col}(G) \le \Delta(G) + 1.$

COVERS

A cover of a graph G is a pair $\mathcal{H} = (L, H)$, where H is a graph and *L* is function $L: V(G) \to \mathcal{P}(V(H))$ such that the following conditions hold:

- The sets $\{L(v) : v \in V(G)\}$ form a partition of V(H) and H[L(v)] is a clique for each $v \in$ V(G);
- If $E_H(L(u), L(v)) \neq \emptyset$, then u = v or $uv \in E(G)$, and if $uv \in E(G)$, then $E_H(L(u), L(v))$ is a matching.

DP-COLORING THE CARTESIAN PRODUCT OF GRAPHS HEMANSHU KAUL, JEFFREY MUDROCK, GUNJAN SHARMA, AND QUINN STRATTON

DP-COLORING

Intuitively, DP-coloring considers the worst-case scenario of how many colors we need in the lists if we no longer can identify the names of the colors. A cover $\mathcal{H} = (L, H)$ of G is k-fold if |L(v)| = k for each $v \in V(G)$. An *H*-coloring is an independent set in *H* of size |V(G)|.

- a 2-fold cover of $K_{1,3}$ $K_{1,3}$ • The DP-chromatic number $\chi_{DP}(G)$ is the smallest k such that G admits an \mathcal{H} -coloring for every *k*-fold cover \mathcal{H} of *G*.
- Let $P_{DP}(G, \mathcal{H})$ be the number of \mathcal{H} colorings of G. Then the DP-color function $P_{DP}(G,m)$ is the minimum value of $P_{DP}(G, \mathcal{H})$ over all *m*-fold covers \mathcal{H} of G. For example, $P_{DP}(K_{1,3}, 2) = 2$.

Given a graph G and a k-assignment L, we can construct a cover \mathcal{H} such that G admits an L coloring if and only if G admits an \mathcal{H} -coloring.

corresponding 2-fold cover of K_3

 $\chi(G) \le \chi_{\ell}(G) \le \chi_{DP}(G) \le \operatorname{col}(G) \le \Delta(G) + 1$

Below are two distinct 2-fold covers of the 4-cycle C_4 . Note that C_4 admits an \mathcal{H}_1 -coloring but not an \mathcal{H}_2 -coloring. In particular, $3 \leq \chi_{DP}(C_4) \leq$ $\Delta(C_4) + 1 = 3$. This implies $\chi_{DP}(C_4) = 3$.

The *Cartesian product* $G \Box H$ of graphs G and H is a graph such that, • $V(G \Box H)$ is the Cartesian product of sets V(G) and V(H)• $(v_1, u_1)(v_2, u_2) \in E(G \square H)$ \iff either $v_1 = v_2$ and $u_1 u_2 \in E(H)$ or $u_1 = u_2$ and $v_1 v_2 \in E(G)$

Our first result is to generalize the above theorem to the context of DP-coloring. **Theorem 2.** $\chi_{DP}(G \Box H) \le \min\{\chi_{DP}(G) + \operatorname{col}(H), \chi_{DP}(H) + \operatorname{col}(G)\} - 1.$

Our next result shows that bound above is sharp when one of the factors is a complete bipartite graph. **Theorem 3.** $\chi_{DP}(G \Box K_{k,t}) = \chi_{DP}(G) + k$ where $t \ge (P_{DP}(G, k + \chi_{DP}(G) - 1))^k$.

LIST COLORING THE CARTESIAN PRODUCTS OF GRAPHS

Theorem 1 (Borowiecki, et al. 2006). $\chi_{\ell}(G \Box H) \leq \min\{\chi_{\ell}(G) + \operatorname{col}(H), \chi_{\ell}(H) + \operatorname{col}(G)\} - 1.$

DP-COLORING THE CARTESIAN PRODUCTS OF GRAPHS

 $\bigcup_{L(u_n, x_1)}$ • • • $L(u_n, x_k)$ • • • • • • $L(u_n, y_1)$ • • • $L(u_n, y_t)$ • • •