The Equitable Choos ability of Complete Bipartite Graphs

Tim Wagstrom joint work with Jeffrey Mudrock, Madelynn Chase, Isaac Kadera, Ezekiel Thornburgh College of Lake County Department of Mathematics; Grayslake, IL

1. Motivating Example

We need to schedule 1 engineering class and 6 calculus classes that meet every day for 50 minutes under the following constraints:

- The engineering class has to be at a different time than all of the calculus classes.
- 3 classrooms are available at each time.
- The professor for each class provides three times they are able to teach the class.

3. List Coloring

List coloring is a variation on the classic vertex coloring problem. Specifically, suppose we associate a list assignment, L, with a graph G such that each vertex $v \in V(G)$ is assigned a list of colors $L(v)$.

- Graph G is L-colorable if there is a proper coloring f of G where $f(v) \in L(v)$ for each $v \in V(G)$. We say f is a proper L-coloring of G.
- A list assignment L is a k-assignment for G if $|L(v)|=k$ for each $v \in V(G)$.
- Graph G is k-choosable if G is L-colorable whenever L is a k-assignment for G.

2. EQUITABLE COLORING

A proper k-coloring, f, of a graph G is said to be an equitable k-coloring if the k color classes differ in size by at most 1 . If f is an equitalbe k-coloring of graph G, it is easy to see that the size of each color class associated with f must be $\lceil|V(G)| / k\rceil$ or $\lfloor|V(G)| / k\rfloor$. We say that G is equitably k-colorable if there exists an equitable k-coloring of G.

Theorem 1 Every graph G has an equitable k coloring when $k \geq \Delta(G)+1$.

Conjecture $2 A$ connected graph G is equitably $\Delta(G)$-colorable if it is different from $K_{m}, C_{2 m+1}$, and $K_{2 m+1,2 m+1}$.

4. EQUITABLE CHOOSABILITY

In 2003 Kostochka et. al. introduced a list analog of equitable coloring. If L is a k-assignment for the graph G, a proper L-coloring of G is equitable if each color appears on at most $\lceil|V(G)| / k\rceil$ vertices. Graph G is equitably L-colorable if there is a proper L-coloring of G that is equitable. Graph G is equitably k-choosable if G is equitably L-colorable whenever L is a k-assignment for G.

Conjecture 3 Every graph G is equitably k-choosable when $k \geq \Delta(G)+1$.

Conjecture $4 A$ connected graph G is equitably k choosable for each $k \geq \Delta(G)$ if it is different from K_{m}, $C_{2 m+1}$, and $K_{2 m+1,2 m+1}$.

5. IMPORTANT LEMMAS

Lemma 5 Suppose that $G=\overline{K_{m}}$ and $L^{(1)}$ is a list assignment for G such that $\left|L^{(1)}(v)\right| \geq \eta$ for each $v \in V(G)$. If $\sigma \in \mathbb{N}$ is such that $m \leq \sigma \eta$, then there is a proper $L^{(1)}$-coloring of G that uses no color more than σ times.
Lemma 6 Suppose $G=K_{2, m}$ and the partite sets of G are $A^{\prime}=\left\{u_{1}, u_{2}\right\}$ and $A=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$. Also suppose that L is a k-assignment for G such that $L\left(u_{1}\right) \cap L\left(u_{2}\right) \neq \phi$. If $m \leq\lceil(m+2) / k\rceil(k-1)$ and $k<m+2$, then G is equitably L-colorable.

Lemma 7 Suppose that $G=K_{2, m}$ and the partite sets of G are $A^{\prime}=\left\{u_{1}, u_{2}\right\}$ and $A=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$. Also suppose that L is a k-assignment for G such that $L\left(u_{1}\right) \cap L\left(u_{2}\right)=\phi$. There must exist a $c_{q} \in L\left(u_{1}\right)$ and $c_{r} \in L\left(u_{2}\right)$ such that $\left|\left\{v \in A:\left\{c_{q}, c_{r}\right\} \subseteq L(v)\right\}\right| \leq m / 4$.

6. Results

Theorem $8 K_{n, m}$ is equitbly k-choosable if $m \leq\lceil(m+n) / k\rceil(k-n)$.
Theorem $9 K_{n, m}$ is not equitbly k-choosable if $m>\lceil(m+n) / k\rceil(k-1)$.
Corollary $10 K_{1, m}$ is equitably k-choosable if and only if $m \leq\lceil(m+1) / k\rceil(k-1)$.
Theorem $11 K_{2, m}$ is equitably k-choossable if and only if $m \leq\lceil(m+2) / k\rceil(k-1)$.

7. Proof Ideas and Examples

Example for Theorem 8: $n=1, m=6, k=3,\lceil(m+n) / k\rceil=3$.

Example for Theorem 9: $n=3, m=9, k=3,\lceil(m+n) / k\rceil=4$.

Example for Theorem 11: $n=2, m=12, k=4,\lceil(m+n) / k\rceil=4$.

Corollary 10 implies that $K_{1,25}$ is equitably k-choosable if and only if

$$
k \in\{6,8,10,11,12\} \cup\{z \in \mathbb{N}: z \geq 14\}
$$

Also Theorem 11 implies that $K_{2,139}$ is equitably k-choosable if and only if

$$
k \in\{14,15,17,19,20,21,22,23\} \cup\{z \in \mathbb{N}: z \geq 25\}
$$

8. Future Research

- For $K_{n, m}$, study the smallest value $t \in \mathbb{N}$, at which $K_{n, m}$ is equitably k-choosable whenever $k \geq t$.
- We would like to characterize the equitable choosablity of $K_{n, m}$ for $n \geq 3$.
- We would like to study the equitable choosability of the disjoint union of complete bipartite graphs.

