THE EQUITABLE CHOOSABILITY OF COMPLETE BIPARTITE GRAPHS TIM WAGSTROM JOINT WORK WITH JEFFREY MUDROCK, MADELYNN CHASE, ISAAC KADERA, EZEKIEL THORNBURGH

1. MOTIVATING EXAMPLE

We need to schedule 1 engineering class and 6 calculus classes that meet every day for 50 minutes under the following constraints:

- The engineering class has to be at a different time than all of the calculus classes.
- 3 classrooms are available at each time.
- The professor for each class provides three times they are able to teach the class.

3. LIST COLORING

List coloring is a variation on the classic vertex coloring problem. Specifically, suppose we associate a list assignment, L, with a graph G such that each vertex $v \in V(G)$ is assigned a list of colors L(v).

- Graph G is L-colorable if there is a proper coloring f of G where $f(v) \in L(v)$ for each $v \in V(G)$. We say f is a proper L-coloring of (τ)
- A list assignment *L* is a *k*-assignment for *G* if |L(v)| = k for each $v \in V(G)$.
- Graph G is k-choosable if G is L-colorable whenever L is a k-assignment for G.

5. IMPORTANT LEMMAS

Lemma 5 Suppose that $G = \overline{K_m}$ and $L^{(1)}$ is a list assignment for G such that $|L^{(1)}(v)| \ge \eta$ for each $v \in V(G)$. If $\sigma \in \mathbb{N}$ is such that $m \leq \sigma \eta$, then there is a proper $L^{(1)}$ -coloring of G that uses no color more than σ times.

Lemma 6 Suppose $G = K_{2,m}$ and the partite sets of G are $A' = \{u_1, u_2\}$ and $A = \{v_1, v_2, ..., v_m\}$. Also suppose that L is a k-assignment for G such that $L(u_1) \cap L(u_2) \neq \phi$. If $m \leq \lceil (m+2)/k \rceil (k-1)$ and k < m+2, then G is equitably L-colorable.

Lemma 7 Suppose that $G = K_{2,m}$ and the partite sets of G are $A' = \{u_1, u_2\}$ and $A = \{v_1, v_2, ..., v_m\}$. Also suppose that L is a k-assignment for G such that $L(u_1) \cap L(u_2) = \phi$. There must exist a $c_q \in L(u_1)$ and $c_r \in L(u_2)$ such that $|\{v \in A : \{c_q, c_r\} \subseteq L(v)\}| \le m/4$.

COLLEGE OF LAKE COUNTY DEPARTMENT OF MATHEMATICS; GRAYSLAKE, IL

2. EQUITABLE COLORING

A proper *k*-coloring, f, of a graph G is said to be an *equitable k-coloring* if the k color classes differ in size by at most 1. If *f* is an equitable *k*-coloring of graph G, it is easy to see that the size of each color class associated with f must be $\lceil |V(G)|/k \rceil$ or $\lfloor |V(G)|/k \rfloor$. We say that G is equitably k-colorable if there exists an equitable k-coloring of G.

Theorem 1 Every graph G has an equitable kcoloring when $k \geq \Delta(G) + 1$.

Conjecture 2 A connected graph G is equitably $\Delta(G)$ -colorable if it is different from K_m , C_{2m+1} , and $\Lambda_{2m+1,2m+1}$.

Shown below is an equitable 4-coloring of P_6 :

4. EQUITABLE CHOOSABILITY

In 2003 Kostochka et. al. introduced a list analog of equitable coloring. If *L* is a *k*-assignment for the graph G, a proper L-coloring of G is equitable if each color appears on at most $\lceil |V(G)|/k \rceil$ vertices. Graph *G* is *equitably L*-*colorable* if there is a proper *L*-coloring of *G* that is equitable. Graph *G* is *equitably k-choosable* if *G* is equitably *L*-colorable whenever L is a k-assignment for G.

Conjecture 3 Every graph G is equitably k-choosable when $k \geq \Delta(G) + 1$.

Conjecture 4 A connected graph G is equitably kchoosable for each $k \geq \Delta(G)$ if it is different from K_m , C_{2m+1} , and $K_{2m+1,2m+1}$.

Also Theorem 11 implies that $K_{2,139}$ is equitably *k*-choosable if and only if $k \in \{14, 15, 17, 19, 20, 21, 22, 23\} \cup \{z \in \mathbb{N} : z \ge 25\}.$

6. RESULTS

Theorem 8 $K_{n,m}$ is equitbly k-choosable if $m \leq \lceil (m+n)/k \rceil (k-n)$.

Theorem 9 $K_{n,m}$ is not equitbly k-choosable if $m > \lceil (m+n)/k \rceil (k-1)$.

Corollary 10 $K_{1,m}$ is equitably k-choosable if and only if $m \leq \lceil (m+1)/k \rceil (k-1)$.

Theorem 11 $K_{2,m}$ is equitably k-choossable if and only if $m \leq \lceil (m+2)/k \rceil (k-1)$.

7. PROOF IDEAS AND EXAMPLES

Corollary 10 implies that $K_{1,25}$ is equitably *k*-choosable if and only if

 $k \in \{6, 8, 10, 11, 12\} \cup \{z \in \mathbb{N} : z \ge 14\}.$

8. FUTURE RESEARCH

• For $K_{n,m}$, study the smallest value $t \in \mathbb{N}$, at which $K_{n,m}$ is equitably k-choosable whenever $k \ge t$.

• We would like to characterize the equitable choosablity of $K_{n,m}$ for $n \ge 3$.

• We would like to study the equitable choosability of the disjoint union of complete bipartite graphs.

