On Proportional 2-Choosability of Graphs with a Bounded Palette

Paul Shin

College of Lake County

October 14, 2019

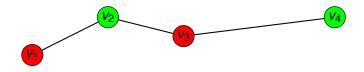
Joint work with Jeffrey Mudrock, Robert Piechota, and Tim Wagstrom

Paul Shin

• A *proper* k-*coloring* of a graph G is a labeling $f: V(G) \rightarrow S$, where |S| = k and $f(u) \neq f(v)$ whenever u and v are adjacent in G.

- A *proper* k-*coloring* of a graph G is a labeling $f: V(G) \rightarrow S$, where |S| = k and $f(u) \neq f(v)$ whenever u and v are adjacent in G.
- For a color c ∈ S, the color class of c, denoted by f⁻¹(c), is the set of vertices to which f assigns the color c.

- A *proper* k-*coloring* of a graph G is a labeling $f: V(G) \rightarrow S$, where |S| = k and $f(u) \neq f(v)$ whenever u and v are adjacent in G.
- For a color c ∈ S, the color class of c, denoted by f⁻¹(c), is the set of vertices to which f assigns the color c.
- Note that the color classes are independent sets.

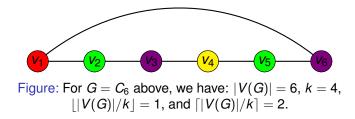


Equitable Coloring

• An *equitable k*-*coloring* of a graph *G* is a proper *k*-coloring of *G* such that the sizes of the color classes differ by at most one.

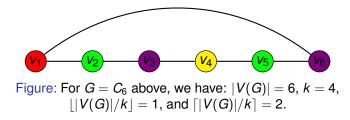
Equitable Coloring

- An *equitable k*-*coloring* of a graph *G* is a proper *k*-coloring of *G* such that the sizes of the color classes differ by at most one.
- Note that for an equitable *k*-coloring *f* of a graph *G*, $\lfloor |V(G)|/k \rfloor \leq |f^{-1}(c)| \leq \lceil |V(G)|/k \rceil$ for each color *c*.



Equitable Coloring

- An *equitable k*-*coloring* of a graph *G* is a proper *k*-coloring of *G* such that the sizes of the color classes differ by at most one.
- Note that for an equitable *k*-coloring *f* of a graph *G*, $\lfloor |V(G)|/k \rfloor \leq |f^{-1}(c)| \leq \lceil |V(G)|/k \rceil$ for each color *c*.



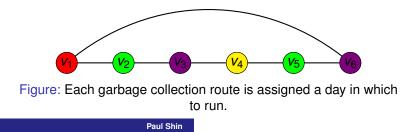
Intuitively, no color is overused or underused.

 In 1973, Tucker presented an application of equitable coloring: the garbage collection problem.

- In 1973, Tucker presented an application of equitable coloring: the garbage collection problem.
- Each vertex represents a garbage collection route, and routes that should not be run on the same day are connected by an edge.

- In 1973, Tucker presented an application of equitable coloring: the garbage collection problem.
- Each vertex represents a garbage collection route, and routes that should not be run on the same day are connected by an edge.
- The goal is to assign each vertex a color (day) so that about the same number of routes are run each day.

- In 1973, Tucker presented an application of equitable coloring: the garbage collection problem.
- Each vertex represents a garbage collection route, and routes that should not be run on the same day are connected by an edge.
- The goal is to assign each vertex a color (day) so that about the same number of routes are run each day.



List Coloring

 A *list assignment* L for a graph G assigns each v ∈ V(G) a list L(v) of available colors.

List Coloring

- A *list assignment* L for a graph G assigns each v ∈ V(G) a list L(v) of available colors.
- The *palette* \mathcal{L} of colors associated with L is $\bigcup_{v \in V(G)} L(v)$.

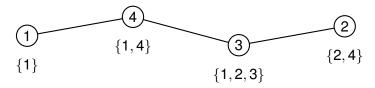


Figure: The palette of the list assignment for the copy of P_4 above is $\mathcal{L} = \{1, 2, 3, 4\}$.

List Coloring

- A *list assignment* L for a graph G assigns each v ∈ V(G) a list L(v) of available colors.
- The *palette* \mathcal{L} of colors associated with L is $\bigcup_{v \in V(G)} L(v)$.

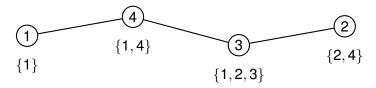


Figure: The palette of the list assignment for the copy of P_4 above is $\mathcal{L} = \{1, 2, 3, 4\}$.

A *proper L-coloring* of G is a proper coloring f of G such that f(v) ∈ L(v) for each v ∈ V(G).

List Coloring Terminology

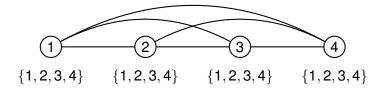
If |L(v)| = k for each v ∈ V(G), then we say L is a k-assignment for G.

List Coloring Terminology

- If |L(v)| = k for each v ∈ V(G), then we say L is a k-assignment for G.
- We say *G* is *k*-choosable if a proper *L*-coloring of *G* exists whenever *L* is a *k*-assignment for *G*.

List Coloring Terminology

- If |L(v)| = k for each v ∈ V(G), then we say L is a k-assignment for G.
- We say *G* is *k*-choosable if a proper *L*-coloring of *G* exists whenever *L* is a *k*-assignment for *G*.
- For example, the complete graph K_n is *n*-choosable.

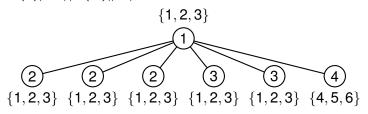


Equitable List Coloring

 In 2003, Kostochka, Pelsmajer, and West introduced a list analogue of equitable coloring called *equitable choosability*.

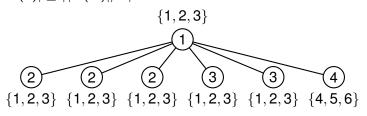
Equitable List Coloring

- In 2003, Kostochka, Pelsmajer, and West introduced a list analogue of equitable coloring called *equitable choosability*.
- For a *k*-assignment *L*, an *equitable L*-*coloring f* for a graph *G* is a proper *L*-coloring for *G* such that $|f^{-1}(c)| \leq \lceil |V(G)|/k \rceil$ for each $c \in \mathcal{L}$.



Equitable List Coloring

- In 2003, Kostochka, Pelsmajer, and West introduced a list analogue of equitable coloring called *equitable choosability*.
- For a *k*-assignment *L*, an *equitable L*-*coloring f* for a graph *G* is a proper *L*-coloring for *G* such that $|f^{-1}(c)| \leq \lceil |V(G)|/k \rceil$ for each $c \in \mathcal{L}$.



• Unlike equitable coloring, our only concern in equitable choosability is not overusing any color.

Proportional Choosability

• Recently, a new type of equitable list coloring called *proportional choosability* was introduced.

Proportional Choosability

- Recently, a new type of equitable list coloring called *proportional choosability* was introduced.
- For a graph G and a k-assignment L for G, the multiplicity of a color c, denoted by η_L(c), is the number of vertices v ∈ V(G) for which c ∈ L(v).

Proportional Choosability

- Recently, a new type of equitable list coloring called *proportional choosability* was introduced.
- For a graph G and a k-assignment L for G, the multiplicity of a color c, denoted by η_L(c), is the number of vertices v ∈ V(G) for which c ∈ L(v).
- For a *k*-assignment *L*, a *proportional L*-coloring for a graph *G* is a proper *L*-coloring for *G* such that $\lfloor \eta(c)/k \rfloor \leq |f^{-1}(c)| \leq \lceil \eta(c)/k \rceil$ for each color $c \in \mathcal{L}$.

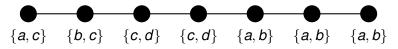


Figure: $\eta(a) = \eta(b) = \eta(c) = 4$ and $\eta(d) = 2$, so we must use *a*, *b*, and *c* exactly twice each and *d* exactly once.

Terminology

• If there exists a proportional *L*-coloring for *G*, then we say *G* is *proportionally L*-*colorable*.

Terminology

- If there exists a proportional *L*-coloring for *G*, then we say *G* is *proportionally L*-colorable.
- *G* is *proportionally k*-*choosable* if *G* is proportionally *L*-colorable whenever *L* is a *k*-assignment for *G*.

Terminology

- If there exists a proportional *L*-coloring for *G*, then we say *G* is *proportionally L*-colorable.
- *G* is *proportionally k*-*choosable* if *G* is proportionally *L*-colorable whenever *L* is a *k*-assignment for *G*.
- One application is assigning referee crews for an elimination-style basketball tournament, given that no crew may referee two games in a row.

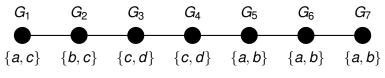


Figure: $\eta(a) = \eta(b) = \eta(c) = 4$ and $\eta(d) = 2$, so we must use *a*, *b*, and *c* exactly twice each and *d* exactly once.

Theorem (Kaul et al. (2019))

If G is proportionally k-choosable, then G is proportionally (k + 1)-choosable.

Theorem (Kaul et al. (2019))

If G is proportionally k-choosable, then G is proportionally (k + 1)-choosable.

Theorem (Kaul et al. (2019))

Suppose H is a subgraph of G. If G is proportionally *k*-choosable, then H is proportionally *k*-choosable.

Theorem (Kaul et al. (2019))

If G is proportionally k-choosable, then G is proportionally (k + 1)-choosable.

Theorem (Kaul et al. (2019))

Suppose H is a subgraph of G. If G is proportionally *k*-choosable, then H is proportionally *k*-choosable.

• Notice that these properties do not hold for equitable coloring and equitable list coloring.

Bounded Palette

If |*L*(*v*)| = *k* for each *v* ∈ *V*(*G*) and *L* ⊆ {1,...,*ℓ*}, then we say *L* is a (*k*, *ℓ*)-assignment for *G*.

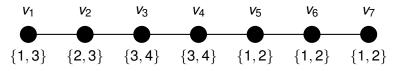


Figure: The palette is $\mathcal{L} = \{1, 2, 3, 4\}$ and |L(v)| = 2 for each $v \in V(G)$, so the list assignment above is a (2, 4)-assignment for $G = P_7$.

Bounded Palette

If |*L*(*v*)| = *k* for each *v* ∈ *V*(*G*) and *L* ⊆ {1,...,*ℓ*}, then we say *L* is a (*k*, *ℓ*)-assignment for *G*.

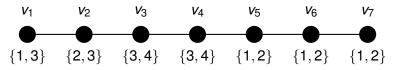


Figure: The palette is $\mathcal{L} = \{1, 2, 3, 4\}$ and |L(v)| = 2 for each $v \in V(G)$, so the list assignment above is a (2, 4)-assignment for $G = P_7$.

We say G is *proportionally* (k, ℓ)-choosable if G is proportionally L-colorable whenever L is a (k, ℓ)-assignment for G.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

For each $k \in \mathbb{N}$, G is proportionally (k, k)-choosable if and only if G is equitably k-colorable.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

For each $k \in \mathbb{N}$, G is proportionally (k, k)-choosable if and only if G is equitably k-colorable.

• This implies that *G* is proportionally (2,2)-choosable if and only if *G* is equitably 2-colorable.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

For each $k \in \mathbb{N}$, G is proportionally (k, k)-choosable if and only if G is equitably k-colorable.

• This implies that *G* is proportionally (2,2)-choosable if and only if *G* is equitably 2-colorable.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

G is proportionally (2,2)-choosable if and only if *G* is a bipartite graph with a bipartition *X*, *Y* satisfying $||X| - |Y|| \le 1$.

Starting Point

Theorem (Kaul et al. (2019))

G is proportionally 2-choosable if and only if *G* is a linear forest such that the largest component of *G* has at most five vertices and all other components of *G* have two or fewer vertices.

Starting Point

Theorem (Kaul et al. (2019))

G is proportionally 2-choosable if and only if *G* is a linear forest such that the largest component of *G* has at most five vertices and all other components of *G* have two or fewer vertices.

 Notice that if G is an n-vertex graph, then G is proportionally 2-choosable if and only if G is proportionally (2,2n)-choosable.

Starting Point

Theorem (Kaul et al. (2019))

G is proportionally 2-choosable if and only if *G* is a linear forest such that the largest component of *G* has at most five vertices and all other components of *G* have two or fewer vertices.

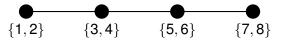
 Notice that if G is an n-vertex graph, then G is proportionally 2-choosable if and only if G is proportionally (2,2n)-choosable.

Starting Point

Theorem (Kaul et al. (2019))

G is proportionally 2-choosable if and only if *G* is a linear forest such that the largest component of *G* has at most five vertices and all other components of *G* have two or fewer vertices.

 Notice that if G is an n-vertex graph, then G is proportionally 2-choosable if and only if G is proportionally (2,2n)-choosable.



 Question: Is there a constant μ such that any graph G is proportionally 2-choosable if and only if G is proportionally (2, μ)-choosable?

 Question: Is there a constant μ such that any graph G is proportionally 2-choosable if and only if G is proportionally (2, μ)-choosable?

 Question: Is there a constant μ such that any graph G is proportionally 2-choosable if and only if G is proportionally (2, μ)-choosable?

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

If G is proportionally $(k, \ell + 1)$ -choosable, then G is proportionally (k, ℓ) -choosable.

 Question: Is there a constant μ such that any graph G is proportionally 2-choosable if and only if G is proportionally (2, μ)-choosable?

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

If G is proportionally $(k, \ell + 1)$ -choosable, then G is proportionally (k, ℓ) -choosable.

Question: For each ℓ ≥ 2, what graphs are proportionally (2, ℓ)-choosable?

 Question: Is there a constant μ such that any graph G is proportionally 2-choosable if and only if G is proportionally (2, μ)-choosable?

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

If G is proportionally $(k, \ell + 1)$ -choosable, then G is proportionally (k, ℓ) -choosable.

- Question: For each ℓ ≥ 2, what graphs are proportionally (2, ℓ)-choosable?
- Notice that if *i* ≥ 2 and *G_i* is the set of graphs that are proportionally (2, *i*)-choosable, then *G*₂ ⊇ *G*₃ ⊇ *G*₄ ⊇ ...

Summary of Results

Theorem (Mudrock, Piechota, S., and Wagstrom (2019))

A graph G is proportionally 2-choosable if and only if G is proportionally $(2, \ell)$ -choosable for $\ell \geq 5$.

Theorem (Mudrock, Piechota, S., and Wagstrom (2019))

A graph G is proportionally 2-choosable if and only if G is proportionally $(2, \ell)$ -choosable for $\ell \geq 5$.

Theorem (Mudrock, Piechota, S., and Wagstrom (2019))

A connected graph G is proportionally (2, 4)-choosable if and only if $G = P_n$ where $n \le 5$ or n = 7.

Theorem (Mudrock, Piechota, S., and Wagstrom (2019))

A graph G is proportionally 2-choosable if and only if G is proportionally $(2, \ell)$ -choosable for $\ell \geq 5$.

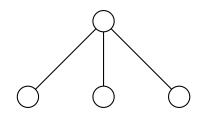
Theorem (Mudrock, Piechota, S., and Wagstrom (2019))

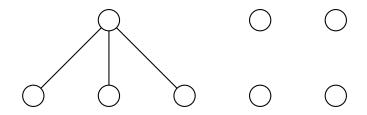
A connected graph G is proportionally (2, 4)-choosable if and only if $G = P_n$ where $n \le 5$ or n = 7.

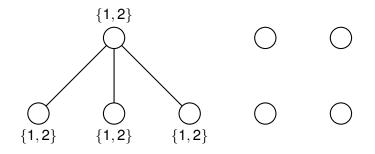
Theorem (Mudrock, Piechota, S., and Wagstrom (2019))

A connected graph G is proportionally (2,3)-choosable if and only if $G = P_n$ for some $n \in \mathbb{N}$.

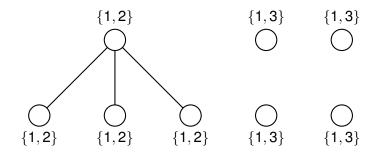
If G contains a copy of $K_{1,3}$ as a subgraph, then G is not proportionally (2,3)-choosable. Consequently, if a graph G is proportionally (2, ℓ)-choosable for some $\ell \ge 3$, then $\Delta(G) \le 2$.

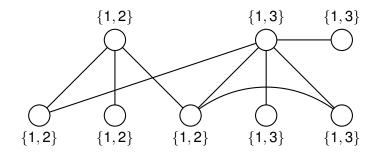


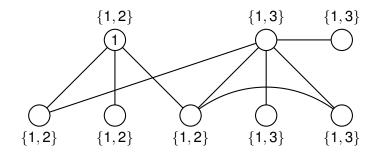




Paul Shin

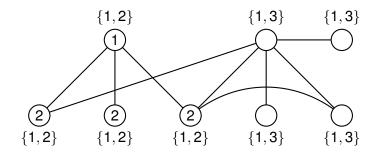




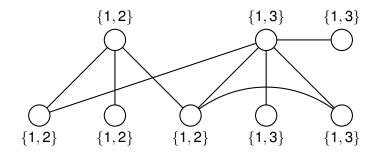


Paul Shin

23/75

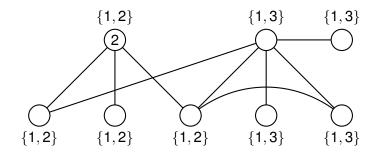


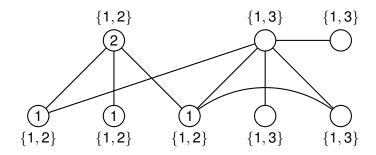
Paul Shin

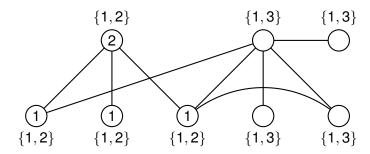


Paul Shin

25/75







Thus, a graph which contains K_{1,3} is not proportionally (2,3)-choosable.

If a graph G is proportionally $(2, \ell)$ -choosable for some $\ell \geq 3$, then $\Delta(G) \leq 2$.

If a graph G is proportionally $(2, \ell)$ -choosable for some $\ell \geq 3$, then $\Delta(G) \leq 2$.

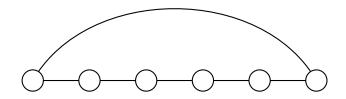
 From this result, we know that if a connected graph G is proportionally (2, ℓ)-choosable for ℓ ≥ 3, then G is either a path or a cycle.

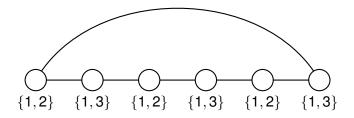
If $G = C_n$ for some $n \ge 3$, then G is not proportionally (2,3)-choosable.

If $G = C_n$ for some $n \ge 3$, then G is not proportionally (2,3)-choosable.

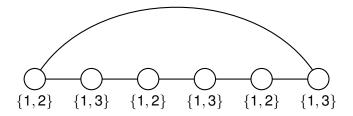
Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

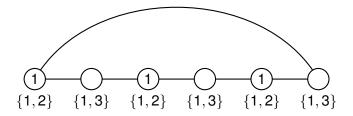
If a graph contains a cycle, then it is not proportionally $(2, \ell)$ -choosable for each $\ell \ge 4$.

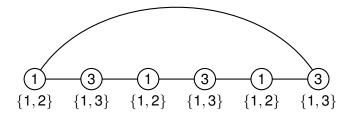


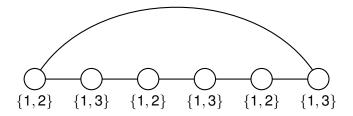


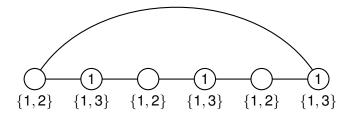
Paul Shin

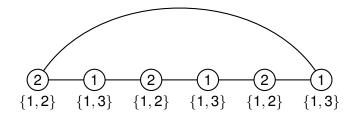


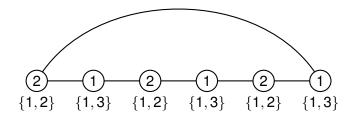




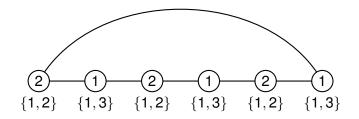




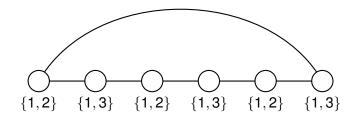




- Notice that η(1) = 6; thus, we must use 1 exactly three times.
- This implies that 2 is either underused or overused, so *G* is not proportionally *L*-colorable.

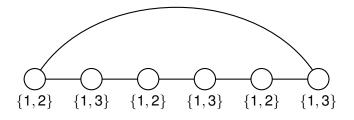


Paul Shin

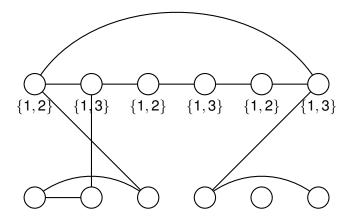


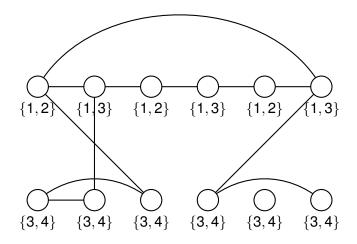
Paul Shin

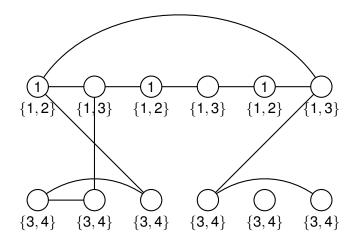
39/75

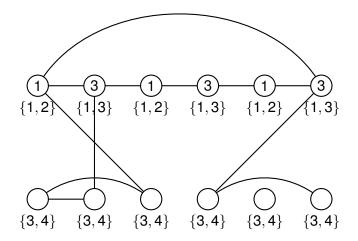


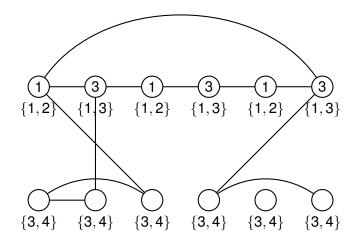
\circ \circ \circ \circ \circ \circ





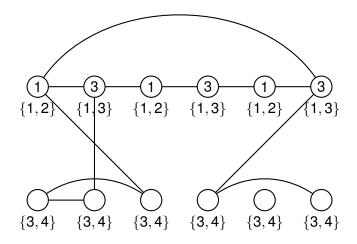


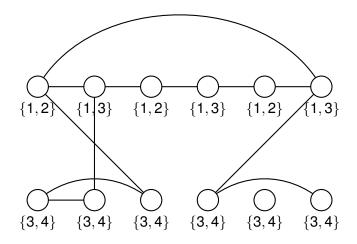


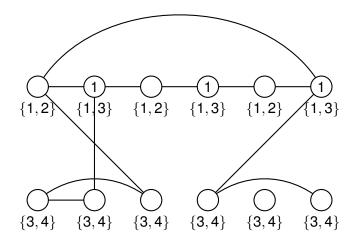


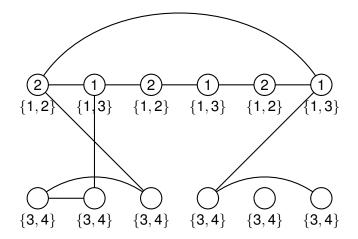
• Notice that the color 2 is underused.

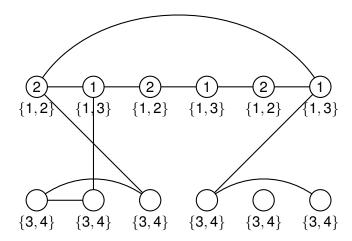
Paul Shin











 Here, 2 is overused; thus, any graph that contains C_n is not proportionally (2, 4)-choosable.

If $G = C_n$ for some $n \ge 3$, then G is not proportionally (2,3)-choosable.

If $G = C_n$ for some $n \ge 3$, then G is not proportionally (2,3)-choosable.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

If a graph contains a cycle, then it is not proportionally $(2, \ell)$ -choosable for each $\ell \ge 4$.

If $G = C_n$ for some $n \ge 3$, then G is not proportionally (2,3)-choosable.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

If a graph contains a cycle, then it is not proportionally $(2, \ell)$ -choosable for each $\ell \ge 4$.

 The first result implies that if a connected graph G is proportionally (2, ℓ)-choosable for ℓ ≥ 3, then G = P_n for some n ∈ N.

Suppose $n \in \mathbb{N}$. If $G = P_n$, then G is proportionally (2,3)-choosable.

Suppose $n \in \mathbb{N}$. If $G = P_n$, then G is proportionally (2,3)-choosable.

• From this result, we can obtain our second characterization.

Suppose $n \in \mathbb{N}$. If $G = P_n$, then G is proportionally (2,3)-choosable.

• From this result, we can obtain our second characterization.

Theorem (Mudrock, Piechota, S., and Wagstrom (2019))

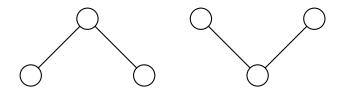
A connected graph G is proportionally (2,3)-choosable if and only if $G = P_n$ for some $n \in \mathbb{N}$.

If a graph contains $P_3 + P_3$, then it is not proportionally $(2, \ell)$ -choosable for each $\ell \ge 5$.

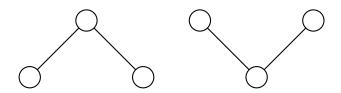
If a graph contains $P_3 + P_3$, then it is not proportionally $(2, \ell)$ -choosable for each $\ell \ge 5$.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

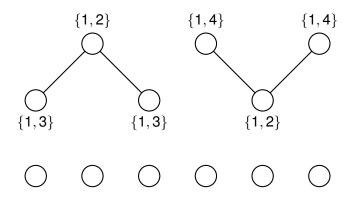
 P_n is not proportionally (2,4)-choosable for n = 6 and for each $n \ge 8$.

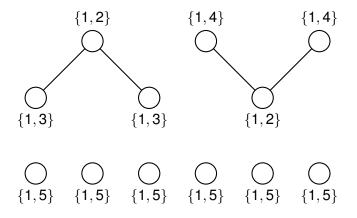


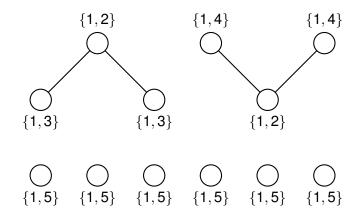
Paul Shin

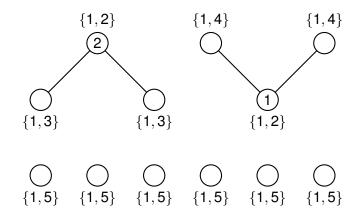


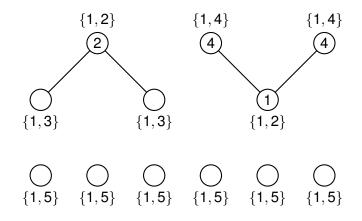
\circ \circ \circ \circ \circ \circ \circ

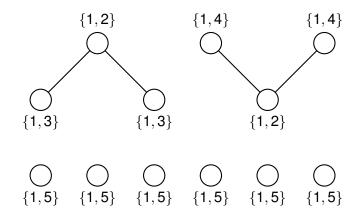


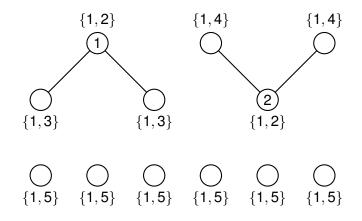


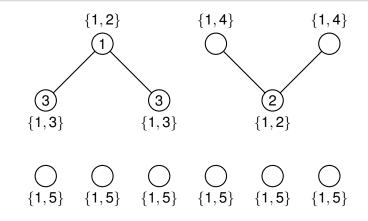


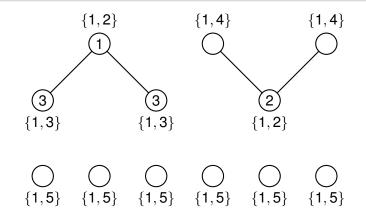




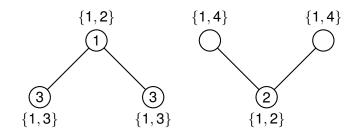


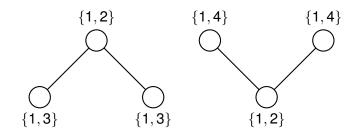


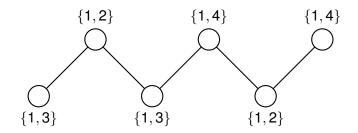


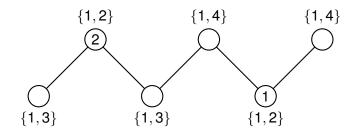


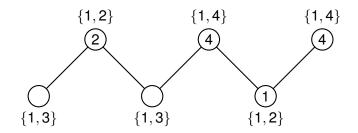
- Notice that $\eta(2) = 2$, so we must use 2 exactly once.
- Thus, any graph that contains P₃ + P₃ is not proportionally (2, 5)-choosable.



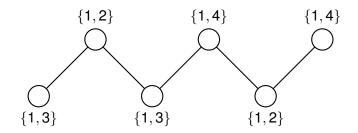


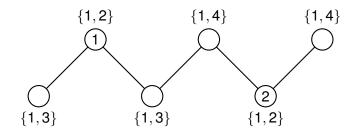




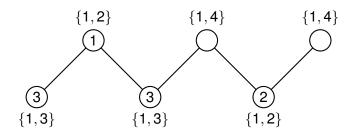


Paul Shin

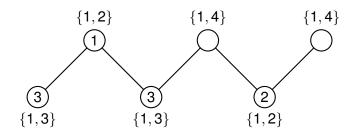




Proof Idea



Proof Idea



• Thus, P_6 is not proportionally (2, 4)-choosable.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

If G is not proportionally $(2, \ell)$ -choosable where $\ell \ge 2$, then $G + P_2$ is not proportionally $(2, \ell)$ -choosable.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

If G is not proportionally $(2, \ell)$ -choosable where $\ell \ge 2$, then $G + P_2$ is not proportionally $(2, \ell)$ -choosable.

• This means $P_6 + P_2$, and thus P_8 , is not proportionally (2, 4)-choosable. It turns out the same is true for P_9 .

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

If G is not proportionally $(2, \ell)$ -choosable where $\ell \ge 2$, then $G + P_2$ is not proportionally $(2, \ell)$ -choosable.

- This means $P_6 + P_2$, and thus P_8 , is not proportionally (2, 4)-choosable. It turns out the same is true for P_9 .
- By induction, *P_n* is not proportionally (2, 4)-choosable for *n* ≥ 8.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

If G is not proportionally $(2, \ell)$ -choosable where $\ell \ge 2$, then $G + P_2$ is not proportionally $(2, \ell)$ -choosable.

- This means $P_6 + P_2$, and thus P_8 , is not proportionally (2, 4)-choosable. It turns out the same is true for P_9 .
- By induction, *P_n* is not proportionally (2,4)-choosable for *n* ≥ 8.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

 P_n is not proportionally (2, 4)-choosable for n = 6 and for each $n \ge 8$.

Theorem (Kaul et al. (2019))

G is proportionally 2-choosable if and only if *G* is a linear forest such that the largest component of *G* has at most five vertices and all other components of *G* have two or fewer vertices.

Theorem (Kaul et al. (2019))

G is proportionally 2-choosable if and only if *G* is a linear forest such that the largest component of *G* has at most five vertices and all other components of *G* have two or fewer vertices.

Theorem (Mudrock, Piechota, S., and Wagstrom (2019))

A connected graph G is proportionally (2, 4)-choosable if and only if $G = P_n$ where $n \le 5$ or n = 7.

Theorem (Kaul et al. (2019))

G is proportionally 2-choosable if and only if *G* is a linear forest such that the largest component of *G* has at most five vertices and all other components of *G* have two or fewer vertices.

Theorem (Mudrock, Piechota, S., and Wagstrom (2019))

A connected graph G is proportionally (2, 4)-choosable if and only if $G = P_n$ where $n \le 5$ or n = 7.

• For now, we've used a computer-assisted proof to show that *P*₇ is proportionally (2, 4)-choosable.

• If a graph *G* is proportionally (2,5)-choosable, then *G* is a forest.

- If a graph *G* is proportionally (2,5)-choosable, then *G* is a forest.
- Furthermore, *G* must be a linear forest.

- If a graph *G* is proportionally (2,5)-choosable, then *G* is a forest.
- Furthermore, *G* must be a linear forest.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

If a graph contains $P_3 + P_3$, then it is not proportionally $(2, \ell)$ -choosable for each $\ell \ge 5$.

• This implies that if a graph contains *P*₆, then it is not proportionally (2,5)-choosable.

- If a graph *G* is proportionally (2,5)-choosable, then *G* is a forest.
- Furthermore, *G* must be a linear forest.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

If a graph contains $P_3 + P_3$, then it is not proportionally $(2, \ell)$ -choosable for each $\ell \ge 5$.

- This implies that if a graph contains *P*₆, then it is not proportionally (2,5)-choosable.
- Also, no two components may contain *P*₃.

Theorem (Mudrock, Piechota, S., and Wagstrom (2019))

For each $\ell \ge 5$, a graph G is proportionally $(2, \ell)$ -choosable if and only if G is a linear forest such that the largest component of G has at most 5 vertices and all other components of G have at most 2 vertices.



• **Open Question:** For $\ell = 3, 4$, what graphs are proportionally $(2, \ell)$ -choosable?

• Open Question: For l = 3, 4, what graphs are proportionally (2, l)-choosable?

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

 $P_6 + P_1$ is proportionally (2,4)-choosable.

• Open Question: For l = 3, 4, what graphs are proportionally (2, l)-choosable?

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

 $P_6 + P_1$ is proportionally (2, 4)-choosable.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

 $C_4 + P_1$ is proportionally (2,3)-choosable.

• **Open Question:** For $\ell = 3, 4$, what graphs are proportionally $(2, \ell)$ -choosable?

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

 $P_6 + P_1$ is proportionally (2, 4)-choosable.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

 $C_4 + P_1$ is proportionally (2,3)-choosable.

 Another possible area of research is the proportional choosability of graphs with a bounded palette for lists of size other than two.

Questions?