On Proportional 2-Choosability of Graphs with a Bounded Palette

Paul Shin

College of Lake County

October 14, 2019

Joint work with Jeffrey Mudrock, Robert Piechota, and Tim Wagstrom

Classical Coloring

- A proper k-coloring of a graph G is a labeling $f: V(G) \rightarrow S$, where $|S|=k$ and $f(u) \neq f(v)$ whenever u and v are adjacent in G.

Classical Coloring

- A proper k-coloring of a graph G is a labeling $f: V(G) \rightarrow S$, where $|S|=k$ and $f(u) \neq f(v)$ whenever u and v are adjacent in G.
- For a color $c \in S$, the color class of c, denoted by $f^{-1}(c)$, is the set of vertices to which f assigns the color c.

Classical Coloring

- A proper k-coloring of a graph G is a labeling $f: V(G) \rightarrow S$, where $|S|=k$ and $f(u) \neq f(v)$ whenever u and v are adjacent in G.
- For a color $c \in S$, the color class of c, denoted by $f^{-1}(c)$, is the set of vertices to which f assigns the color c.
- Note that the color classes are independent sets.

Paul Shin

Equitable Coloring

- An equitable k-coloring of a graph G is a proper k-coloring of G such that the sizes of the color classes differ by at most one.

Equitable Coloring

- An equitable k-coloring of a graph G is a proper k-coloring of G such that the sizes of the color classes differ by at most one.
- Note that for an equitable k-coloring f of a graph G, $\lfloor|V(G)| / k\rfloor \leq\left|f^{-1}(c)\right| \leq\lceil|V(G)| / k\rceil$ for each color c.

Figure: For $G=C_{6}$ above, we have: $|V(G)|=6, k=4$, $\lfloor|V(G)| / k\rfloor=1$, and $\lceil|V(G)| / k\rceil=2$.

Equitable Coloring

- An equitable k-coloring of a graph G is a proper k-coloring of G such that the sizes of the color classes differ by at most one.
- Note that for an equitable k-coloring f of a graph G, $\lfloor|V(G)| / k\rfloor \leq\left|f^{-1}(c)\right| \leq\lceil|V(G)| / k\rceil$ for each color c.

Figure: For $G=C_{6}$ above, we have: $|V(G)|=6, k=4$, $\lfloor|V(G)| / k\rfloor=1$, and $\lceil|V(G)| / k\rceil=2$.

- Intuitively, no color is overused or underused.

Application of Equitable Coloring

- In 1973, Tucker presented an application of equitable coloring: the garbage collection problem.

Application of Equitable Coloring

- In 1973, Tucker presented an application of equitable coloring: the garbage collection problem.
- Each vertex represents a garbage collection route, and routes that should not be run on the same day are connected by an edge.

Application of Equitable Coloring

- In 1973, Tucker presented an application of equitable coloring: the garbage collection problem.
- Each vertex represents a garbage collection route, and routes that should not be run on the same day are connected by an edge.
- The goal is to assign each vertex a color (day) so that about the same number of routes are run each day.

Application of Equitable Coloring

- In 1973, Tucker presented an application of equitable coloring: the garbage collection problem.
- Each vertex represents a garbage collection route, and routes that should not be run on the same day are connected by an edge.
- The goal is to assign each vertex a color (day) so that about the same number of routes are run each day.

Figure: Each garbage collection route is assigned a day in which to run.

List Coloring

- A list assignment L for a graph G assigns each $v \in V(G)$ a list $L(v)$ of available colors.

List Coloring

- A list assignment L for a graph G assigns each $v \in V(G)$ a list $L(v)$ of available colors.
- The palette \mathcal{L} of colors associated with L is $\cup_{v \in V(G)} L(v)$.

Figure: The palette of the list assignment for the copy of P_{4} above is $\mathcal{L}=\{1,2,3,4\}$.

List Coloring

- A list assignment L for a graph G assigns each $v \in V(G)$ a list $L(v)$ of available colors.
- The palette \mathcal{L} of colors associated with L is $\cup_{v \in V(G)} L(v)$.

Figure: The palette of the list assignment for the copy of P_{4} above is $\mathcal{L}=\{1,2,3,4\}$.

- A proper L-coloring of G is a proper coloring f of G such that $f(v) \in L(v)$ for each $v \in V(G)$.

List Coloring Terminology

- If $|L(v)|=k$ for each $v \in V(G)$, then we say L is a k-assignment for G.

List Coloring Terminology

- If $|L(v)|=k$ for each $v \in V(G)$, then we say L is a k-assignment for G.
- We say G is k-choosable if a proper L-coloring of G exists whenever L is a k-assignment for G.

List Coloring Terminology

- If $|L(v)|=k$ for each $v \in V(G)$, then we say L is a k-assignment for G.
- We say G is k-choosable if a proper L-coloring of G exists whenever L is a k-assignment for G.
- For example, the complete graph K_{n} is n-choosable.

Equitable List Coloring

- In 2003, Kostochka, Pelsmajer, and West introduced a list analogue of equitable coloring called equitable choosability.

Equitable List Coloring

- In 2003, Kostochka, Pelsmajer, and West introduced a list analogue of equitable coloring called equitable choosability.
- For a k-assignment L, an equitable L-coloring f for a graph G is a proper L-coloring for G such that $\left|f^{-1}(c)\right| \leq\lceil|V(G)| / k\rceil$ for each $c \in \mathcal{L}$.
$\{1,2,3\}$

$\{1,2,3\}\{1,2,3\}\{1,2,3\}\{1,2,3\}\{1,2,3\}\{4,5,6\}$

Equitable List Coloring

- In 2003, Kostochka, Pelsmajer, and West introduced a list analogue of equitable coloring called equitable choosability.
- For a k-assignment L, an equitable L-coloring f for a graph G is a proper L-coloring for G such that $\left|f^{-1}(c)\right| \leq\lceil|V(G)| / k\rceil$ for each $c \in \mathcal{L}$.

- Unlike equitable coloring, our only concern in equitable choosability is not overusing any color.

Proportional Choosability

- Recently, a new type of equitable list coloring called proportional choosability was introduced.

Proportional Choosability

- Recently, a new type of equitable list coloring called proportional choosability was introduced.
- For a graph G and a k-assignment L for G, the multiplicity of a color c, denoted by $\eta_{L}(c)$, is the number of vertices $v \in V(G)$ for which $c \in L(v)$.

Proportional Choosability

- Recently, a new type of equitable list coloring called proportional choosability was introduced.
- For a graph G and a k-assignment L for G, the multiplicity of a color c, denoted by $\eta_{L}(c)$, is the number of vertices $v \in V(G)$ for which $c \in L(v)$.
- For a k-assignment L, a proportional L-coloring for a graph G is a proper L-coloring for G such that $\lfloor\eta(c) / k\rfloor \leq\left|f^{-1}(c)\right| \leq\lceil\eta(c) / k\rceil$ for each color $c \in \mathcal{L}$.

$\{a, c\} \quad\{b, c\} \quad\{c, d\} \quad\{c, d\} \quad\{a, b\} \quad\{a, b\} \quad\{a, b\}$
Figure: $\eta(a)=\eta(b)=\eta(c)=4$ and $\eta(d)=2$, so we must use a, b, and c exactly twice each and d exactly once.

Terminology

- If there exists a proportional L-coloring for G, then we say G is proportionally L-colorable.

Terminology

- If there exists a proportional L-coloring for G, then we say G is proportionally L-colorable.
- G is proportionally k-choosable if G is proportionally L-colorable whenever L is a k-assignment for G.

Terminology

- If there exists a proportional L-coloring for G, then we say G is proportionally L-colorable.
- G is proportionally k-choosable if G is proportionally L-colorable whenever L is a k-assignment for G.
- One application is assigning referee crews for an elimination-style basketball tournament, given that no crew may referee two games in a row.

Figure: $\eta(a)=\eta(b)=\eta(c)=4$ and $\eta(d)=2$, so we must use a, b, and c exactly twice each and d exactly once.

Monotonicity Results

Theorem (Kaul et al. (2019))

If G is proportionally k-choosable, then G is proportionally $(k+1)$-choosable.

Monotonicity Results

Theorem (Kaul et al. (2019))

If G is proportionally k-choosable, then G is proportionally $(k+1)$-choosable.

Theorem (Kaul et al. (2019))

Suppose H is a subgraph of G. If G is proportionally k-choosable, then H is proportionally k-choosable.

Monotonicity Results

Theorem (Kaul et al. (2019))

If G is proportionally k-choosable, then G is proportionally $(k+1)$-choosable.

Theorem (Kaul et al. (2019))

Suppose H is a subgraph of G. If G is proportionally k-choosable, then H is proportionally k-choosable.

- Notice that these properties do not hold for equitable coloring and equitable list coloring.

Bounded Palette

- If $|L(v)|=k$ for each $v \in V(G)$ and $\mathcal{L} \subseteq\{1, \ldots, \ell\}$, then we say L is a (k, ℓ)-assignment for G.

Figure: The palette is $\mathcal{L}=\{1,2,3,4\}$ and $|L(v)|=2$ for each $v \in V(G)$, so the list assignment above is a (2,4)-assignment

$$
\text { for } G=P_{7} .
$$

Bounded Palette

- If $|L(v)|=k$ for each $v \in V(G)$ and $\mathcal{L} \subseteq\{1, \ldots, \ell\}$, then we say L is a (k, ℓ)-assignment for G.

Figure: The palette is $\mathcal{L}=\{1,2,3,4\}$ and $|L(v)|=2$ for each $v \in V(G)$, so the list assignment above is a (2,4)-assignment

$$
\text { for } G=P_{7} .
$$

- We say G is proportionally (k, ℓ)-choosable if G is proportionally L-colorable whenever L is a (k, ℓ)-assignment for G.

Starting Point

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

For each $k \in \mathbb{N}$, G is proportionally (k, k)-choosable if and only if G is equitably k-colorable.

Starting Point

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

For each $k \in \mathbb{N}$, G is proportionally (k, k)-choosable if and only if G is equitably k-colorable.

- This implies that G is proportionally $(2,2)$-choosable if and only if G is equitably 2 -colorable.

Starting Point

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

For each $k \in \mathbb{N}$, G is proportionally (k, k)-choosable if and only if G is equitably k-colorable.

- This implies that G is proportionally $(2,2)$-choosable if and only if G is equitably 2 -colorable.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

G is proportionally $(2,2)$-choosable if and only if G is a bipartite graph with a bipartition X, Y satisfying $\| X|-|Y|| \leq 1$.

Starting Point

Theorem (Kaul et al. (2019))

G is proportionally 2-choosable if and only if G is a linear forest such that the largest component of G has at most five vertices and all other components of G have two or fewer vertices.

Starting Point

Theorem (Kaul et al. (2019))

G is proportionally 2-choosable if and only if G is a linear forest such that the largest component of G has at most five vertices and all other components of G have two or fewer vertices.

- Notice that if G is an n-vertex graph, then G is proportionally 2-choosable if and only if G is proportionally (2, 2n)-choosable.

Starting Point

Theorem (Kaul et al. (2019))

G is proportionally 2-choosable if and only if G is a linear forest such that the largest component of G has at most five vertices and all other components of G have two or fewer vertices.

- Notice that if G is an n-vertex graph, then G is proportionally 2-choosable if and only if G is proportionally (2, 2n)-choosable.

Starting Point

Theorem (Kaul et al. (2019))

G is proportionally 2-choosable if and only if G is a linear forest such that the largest component of G has at most five vertices and all other components of G have two or fewer vertices.

- Notice that if G is an n-vertex graph, then G is proportionally 2-choosable if and only if G is proportionally (2, 2n)-choosable.

- Question: Is there a constant μ such that any graph G is proportionally 2 -choosable if and only if G is proportionally $(2, \mu)$-choosable?

Questions Guiding Our Research

- Question: Is there a constant μ such that any graph G is proportionally 2 -choosable if and only if G is proportionally $(2, \mu)$-choosable?

Questions Guiding Our Research

- Question: Is there a constant μ such that any graph G is proportionally 2 -choosable if and only if G is proportionally $(2, \mu)$-choosable?

Proposition (Mudrock, Piechota, S., and Wagstrom (2019)) If G is proportionally $(k, \ell+1)$-choosable, then G is proportionally (k, ℓ)-choosable.

Questions Guiding Our Research

- Question: Is there a constant μ such that any graph G is proportionally 2 -choosable if and only if G is proportionally $(2, \mu)$-choosable?

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

If G is proportionally $(k, \ell+1)$-choosable, then G is proportionally (k, ℓ)-choosable.

- Question: For each $\ell \geq 2$, what graphs are proportionally (2, ℓ)-choosable?

Questions Guiding Our Research

- Question: Is there a constant μ such that any graph G is proportionally 2 -choosable if and only if G is proportionally $(2, \mu)$-choosable?

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

If G is proportionally $(k, \ell+1)$-choosable, then G is proportionally (k, ℓ)-choosable.

- Question: For each $\ell \geq 2$, what graphs are proportionally ($2, \ell$)-choosable?
- Notice that if $i \geq 2$ and \mathcal{G}_{i} is the set of graphs that are proportionally $(2, i)$-choosable, then $\mathcal{G}_{2} \supseteq \mathcal{G}_{3} \supseteq \mathcal{G}_{4} \supseteq \ldots$

Summary of Results

Theorem (Mudrock, Piechota, S., and Wagstrom (2019))

A graph G is proportionally 2-choosable if and only if G is proportionally $(2, \ell)$-choosable for $\ell \geq 5$.

Summary of Results

Theorem (Mudrock, Piechota, S., and Wagstrom (2019))

A graph G is proportionally 2 -choosable if and only if G is proportionally $(2, \ell)$-choosable for $\ell \geq 5$.

Theorem (Mudrock, Piechota, S., and Wagstrom (2019))

A connected graph G is proportionally $(2,4)$-choosable if and only if $G=P_{n}$ where $n \leq 5$ or $n=7$.

Summary of Results

Theorem (Mudrock, Piechota, S., and Wagstrom (2019))
A graph G is proportionally 2-choosable if and only if G is proportionally $(2, \ell)$-choosable for $\ell \geq 5$.

Theorem (Mudrock, Piechota, S., and Wagstrom (2019))

A connected graph G is proportionally $(2,4)$-choosable if and only if $G=P_{n}$ where $n \leq 5$ or $n=7$.

Theorem (Mudrock, Piechota, S., and Wagstrom (2019))

A connected graph G is proportionally $(2,3)$-choosable if and only if $G=P_{n}$ for some $n \in \mathbb{N}$.

A First Result

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

If G contains a copy of $K_{1,3}$ as a subgraph, then G is not proportionally $(2,3)$-choosable. Consequently, if a graph G is proportionally $(2, \ell)$-choosable for some $\ell \geq 3$, then $\Delta(G) \leq 2$.

Proof Idea

Proof Idea

\bigcirc
$\bigcirc$$\bigcirc$

Proof Idea

- Thus, a graph which contains $K_{1,3}$ is not proportionally $(2,3)$-choosable.

Conclusions

Proposition (Mudrock, Piechota, S., and Wagstrom (2019)) If a graph G is proportionally $(2, \ell)$-choosable for some $\ell \geq 3$, then $\Delta(G) \leq 2$.

Conclusions

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

 If a graph G is proportionally $(2, \ell)$-choosable for some $\ell \geq 3$, then $\Delta(G) \leq 2$.- From this result, we know that if a connected graph G is proportionally $(2, \ell)$-choosable for $\ell \geq 3$, then G is either a path or a cycle.

Further Results

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))
If $G=C_{n}$ for some $n \geq 3$, then G is not proportionally
$(2,3)$-choosable.

Further Results

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))
If $G=C_{n}$ for some $n \geq 3$, then G is not proportionally
$(2,3)$-choosable.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

If a graph contains a cycle, then it is not proportionally ($2, \ell$)-choosable for each $\ell \geq 4$.

Paul Shin

Proof Idea

- Notice that $\eta(1)=6$; thus, we must use 1 exactly three times.

Proof Idea

- Notice that $\eta(1)=6$; thus, we must use 1 exactly three times.

Proof Idea

- Notice that $\eta(1)=6$; thus, we must use 1 exactly three times.

Proof Idea

- Notice that $\eta(1)=6$; thus, we must use 1 exactly three times.

Proof Idea

- Notice that $\eta(1)=6$; thus, we must use 1 exactly three times.

Proof Idea

- Notice that $\eta(1)=6$; thus, we must use 1 exactly three times.

Proof Idea

- Notice that $\eta(1)=6$; thus, we must use 1 exactly three times.
- This implies that 2 is either underused or overused, so G is not proportionally L-colorable.

Paul Shin

Paul Shin

Paul Shin

Paul Shin

Proof Idea

Proof Idea

Proof Idea

Paul Shin

Proof Idea

- Notice that the color 2 is underused.

Proof Idea

- Here, 2 is overused; thus, any graph that contains C_{n} is not proportionally (2,4)-choosable.

Conclusions

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))
If $G=C_{n}$ for some $n \geq 3$, then G is not proportionally
$(2,3)$-choosable.

Conclusions

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

If $G=C_{n}$ for some $n \geq 3$, then G is not proportionally
$(2,3)$-choosable.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

If a graph contains a cycle, then it is not proportionally
($2, \ell$)-choosable for each $\ell \geq 4$.

Conclusions

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

If $G=C_{n}$ for some $n \geq 3$, then G is not proportionally
$(2,3)$-choosable.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

If a graph contains a cycle, then it is not proportionally
$(2, \ell)$-choosable for each $\ell \geq 4$.

- The first result implies that if a connected graph G is proportionally $(2, \ell)$-choosable for $\ell \geq 3$, then $G=P_{n}$ for some $n \in \mathbb{N}$.

Conclusions

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))
Suppose $n \in \mathbb{N}$. If $G=P_{n}$, then G is proportionally
$(2,3)$-choosable.

Conclusions

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

Suppose $n \in \mathbb{N}$. If $G=P_{n}$, then G is proportionally $(2,3)$-choosable.

- From this result, we can obtain our second characterization.

Conclusions

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

Suppose $n \in \mathbb{N}$. If $G=P_{n}$, then G is proportionally
$(2,3)$-choosable.

- From this result, we can obtain our second characterization.

Theorem (Mudrock, Piechota, S., and Wagstrom (2019))

A connected graph G is proportionally $(2,3)$-choosable if and only if $G=P_{n}$ for some $n \in \mathbb{N}$.

Another Result

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))
If a graph contains $P_{3}+P_{3}$, then it is not proportionally
($2, \ell$)-choosable for each $\ell \geq 5$.

Another Result

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

If a graph contains $P_{3}+P_{3}$, then it is not proportionally ($2, \ell$)-choosable for each $\ell \geq 5$.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

P_{n} is not proportionally $(2,4)$-choosable for $n=6$ and for each $n \geq 8$.

Proof Idea

Proof Idea

\bigcirc

Proof Idea

- Notice that $\eta(2)=2$, so we must use 2 exactly once.

Proof Idea

- Notice that $\eta(2)=2$, so we must use 2 exactly once.

Proof Idea

- Notice that $\eta(2)=2$, so we must use 2 exactly once.

Proof Idea

- Notice that $\eta(2)=2$, so we must use 2 exactly once.

Proof Idea

- Notice that $\eta(2)=2$, so we must use 2 exactly once.

Proof Idea

- Notice that $\eta(2)=2$, so we must use 2 exactly once.

Proof Idea

- Notice that $\eta(2)=2$, so we must use 2 exactly once.
- Thus, any graph that contains $P_{3}+P_{3}$ is not proportionally $(2,5)$-choosable.

Paul Shin

Proof Idea

- Thus, P_{6} is not proportionally $(2,4)$-choosable.

Conclusions

Proposition (Mudrock, Piechota, S., and Wagstrom (2019)) If G is not proportionally $(2, \ell)$-choosable where $\ell \geq 2$, then $G+P_{2}$ is not proportionally $(2, \ell)$-choosable.

Conclusions

Proposition (Mudrock, Piechota, S., and Wagstrom (2019)) If G is not proportionally $(2, \ell)$-choosable where $\ell \geq 2$, then $G+P_{2}$ is not proportionally $(2, \ell)$-choosable.

- This means $P_{6}+P_{2}$, and thus P_{8}, is not proportionally $(2,4)$-choosable. It turns out the same is true for P_{9}.

Conclusions

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

 If G is not proportionally $(2, \ell)$-choosable where $\ell \geq 2$, then $G+P_{2}$ is not proportionally $(2, \ell)$-choosable.- This means $P_{6}+P_{2}$, and thus P_{8}, is not proportionally $(2,4)$-choosable. It turns out the same is true for P_{9}.
- By induction, P_{n} is not proportionally $(2,4)$-choosable for $n \geq 8$.

Conclusions

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

If G is not proportionally $(2, \ell)$-choosable where $\ell \geq 2$, then $G+P_{2}$ is not proportionally $(2, \ell)$-choosable.

- This means $P_{6}+P_{2}$, and thus P_{8}, is not proportionally $(2,4)$-choosable. It turns out the same is true for P_{9}.
- By induction, P_{n} is not proportionally $(2,4)$-choosable for $n \geq 8$.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

P_{n} is not proportionally $(2,4)$-choosable for $n=6$ and for each $n \geq 8$.

Conclusions

Theorem (Kaul et al. (2019))
G is proportionally 2-choosable if and only if G is a linear forest such that the largest component of G has at most five vertices and all other components of G have two or fewer vertices.

Conclusions

Theorem (Kaul et al. (2019))

G is proportionally 2-choosable if and only if G is a linear forest such that the largest component of G has at most five vertices and all other components of G have two or fewer vertices.

Theorem (Mudrock, Piechota, S., and Wagstrom (2019))

A connected graph G is proportionally $(2,4)$-choosable if and only if $G=P_{n}$ where $n \leq 5$ or $n=7$.

Conclusions

Theorem (Kaul et al. (2019))

G is proportionally 2-choosable if and only if G is a linear forest such that the largest component of G has at most five vertices and all other components of G have two or fewer vertices.

Theorem (Mudrock, Piechota, S., and Wagstrom (2019))

A connected graph G is proportionally $(2,4)$-choosable if and only if $G=P_{n}$ where $n \leq 5$ or $n=7$.

- For now, we've used a computer-assisted proof to show that P_{7} is proportionally $(2,4)$-choosable.

Conclusions

- If a graph G is proportionally $(2,5)$-choosable, then G is a forest.

Conclusions

- If a graph G is proportionally $(2,5)$-choosable, then G is a forest.
- Furthermore, G must be a linear forest.

Conclusions

- If a graph G is proportionally $(2,5)$-choosable, then G is a forest.
- Furthermore, G must be a linear forest.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

If a graph contains $P_{3}+P_{3}$, then it is not proportionally $(2, \ell)$-choosable for each $\ell \geq 5$.

- This implies that if a graph contains P_{6}, then it is not proportionally $(2,5)$-choosable.

Conclusions

- If a graph G is proportionally $(2,5)$-choosable, then G is a forest.
- Furthermore, G must be a linear forest.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

If a graph contains $P_{3}+P_{3}$, then it is not proportionally $(2, \ell)$-choosable for each $\ell \geq 5$.

- This implies that if a graph contains P_{6}, then it is not proportionally $(2,5)$-choosable.
- Also, no two components may contain P_{3}.

Conclusions

Theorem (Mudrock, Piechota, S., and Wagstrom (2019))

For each $\ell \geq 5$, a graph G is proportionally $(2, \ell)$-choosable if and only if G is a linear forest such that the largest component of G has at most 5 vertices and all other components of G have at most 2 vertices.

An Open Question

- Open Question: For $\ell=3,4$, what graphs are proportionally $(2, \ell)$-choosable?

An Open Question

- Open Question: For $\ell=3,4$, what graphs are proportionally $(2, \ell)$-choosable?

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))
$P_{6}+P_{1}$ is proportionally $(2,4)$-choosable.

An Open Question

- Open Question: For $\ell=3,4$, what graphs are proportionally $(2, \ell)$-choosable?

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))
$P_{6}+P_{1}$ is proportionally $(2,4)$-choosable.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

$C_{4}+P_{1}$ is proportionally $(2,3)$-choosable.

An Open Question

- Open Question: For $\ell=3,4$, what graphs are proportionally $(2, \ell)$-choosable?

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))
$P_{6}+P_{1}$ is proportionally $(2,4)$-choosable.

Proposition (Mudrock, Piechota, S., and Wagstrom (2019))

$C_{4}+P_{1}$ is proportionally $(2,3)$-choosable.

- Another possible area of research is the proportional choosability of graphs with a bounded palette for lists of size other than two.
- Questions?

