Equitable Choosability of the Disjoint Union of Stars

Tim Wagstrom

University of Illinois at Chicago
11/6/2020

Joint work with Hemanshu Kaul and Jeffrey Mudrock

Classical Coloring

- A proper k-coloring of a graph G is a labeling $f: V(G) \rightarrow S$, where $|S|=k$ and $f(u) \neq f(v)$ whenever u and v are adjacent in G.

Classical Coloring

- A proper k-coloring of a graph G is a labeling $f: V(G) \rightarrow S$, where $|S|=k$ and $f(u) \neq f(v)$ whenever u and v are adjacent in G.

- The chromatic number of a graph G, denoted $\chi(G)$, is the smallest k such that G has a proper k-coloring.

Classical Coloring

- A proper k-coloring of a graph G is a labeling $f: V(G) \rightarrow S$, where $|S|=k$ and $f(u) \neq f(v)$ whenever u and v are adjacent in G.

- The chromatic number of a graph G, denoted $\chi(G)$, is the smallest k such that G has a proper k-coloring.
- For a color $c \in S$, the color class of c, denoted by $f^{-1}(c)$, is the set of vertices to which f assigns the color c.

Classical Coloring

- A proper k-coloring of a graph G is a labeling $f: V(G) \rightarrow S$, where $|S|=k$ and $f(u) \neq f(v)$ whenever u and v are adjacent in G.

- The chromatic number of a graph G, denoted $\chi(G)$, is the smallest k such that G has a proper k-coloring.
- For a color $c \in S$, the color class of c, denoted by $f^{-1}(c)$, is the set of vertices to which f assigns the color c.
- Note that the color classes are independent sets.

Equitable Coloring

- An equitable k-coloring of a graph G is a proper k-coloring of G such that the sizes of the color classes differ by at most one.

Equitable Coloring

- An equitable k-coloring of a graph G is a proper k-coloring of G such that the sizes of the color classes differ by at most one.
- Note that for an equitable k-coloring f of a graph G, $\lfloor|V(G)| / k\rfloor \leq\left|f^{-1}(c)\right| \leq\lceil|V(G)| / k\rceil$ for each color c.

Figure: Is $G=K_{3,3}$ equitably 4-colorable?

Equitable Coloring

- An equitable k-coloring of a graph G is a proper k-coloring of G such that the sizes of the color classes differ by at most one.
- Note that for an equitable k-coloring f of a graph G, $\lfloor|V(G)| / k\rfloor \leq\left|f^{-1}(c)\right| \leq\lceil|V(G)| / k\rceil$ for each color c.

Figure: Is $G=K_{3,3}$ equitably 4-colorable? Yes. We have that

$$
\lfloor 6 / 4\rfloor=1 \text { and }\lceil 6 / 4\rceil=2 .
$$

Equitable Coloring

- An equitable k-coloring of a graph G is a proper k-coloring of G such that the sizes of the color classes differ by at most one.
- Note that for an equitable k-coloring f of a graph G, $\lfloor|V(G)| / k\rfloor \leq\left|f^{-1}(c)\right| \leq\lceil|V(G)| / k\rceil$ for each color c.

Figure: Is $G=K_{3,3}$ equitably 4-colorable? Yes. We have that

$$
\lfloor 6 / 4\rfloor=1 \text { and }\lceil 6 / 4\rceil=2 .
$$

- Note that $K_{3,3}$ is equitably 2-colorable but not equitably 3-colorable.

Important Theorems and Conjectures for Equitable Coloring

Theorem (Hajnal and Szemeredi(1970))
Every graph G has an equitable k-coloring when $k \geq \Delta(G)+1$.

Important Theorems and Conjectures for Equitable Coloring

Theorem (Hajnal and Szemeredi(1970))

Every graph G has an equitable k-coloring when $k \geq \Delta(G)+1$.

Conjecture (Chen, Lih, and Wu (1994))

A connected graph G is equitably $\Delta(G)$-colorable if it is different from $K_{m}, C_{2 m+1}$, and $K_{2 m+1,2 m+1}$.

Important Theorems and Conjectures for Equitable Coloring

Theorem (Hajnal and Szemeredi(1970))

Every graph G has an equitable k-coloring when $k \geq \Delta(G)+1$.

Conjecture (Chen, Lih, and Wu (1994))

A connected graph G is equitably $\Delta(G)$-colorable if it is different from $K_{m}, C_{2 m+1}$, and $K_{2 m+1,2 m+1}$.

Theorem (Yap and Zhang (1997))

Suppose that $G_{1}, G_{2} \ldots G_{n}$ are pairwise vertex disjoint graphs and $G=\sum_{i=1}^{n} G_{i}$. If G_{i} has an equitable k-coloring for all $i=1,2, \ldots, n$ then G has an equitable k-coloring.

List Coloring

- A list assignment L for a graph G assigns each $v \in V(G)$ a list $L(v)$ of available colors.

List Coloring

- A list assignment L for a graph G assigns each $v \in V(G)$ a list $L(v)$ of available colors.

List Coloring

- A list assignment L for a graph G assigns each $v \in V(G)$ a list $L(v)$ of available colors.

- A proper L-coloring of G is a proper coloring f of G such that $f(v) \in L(v)$ for each $v \in V(G)$.

List Coloring

- A list assignment L for a graph G assigns each $v \in V(G)$ a list $L(v)$ of available colors.

- A proper L-coloring of G is a proper coloring f of G such that $f(v) \in L(v)$ for each $v \in V(G)$.
- The palette of a list assignment L is $\mathcal{L}=\bigcup_{v \in V(G)} L(v)$

List Coloring Terminology

- If $|L(v)|=k$ for each $v \in V(G)$, then we say L is a k-assignment for G.

List Coloring Terminology

- If $|L(v)|=k$ for each $v \in V(G)$, then we say L is a k-assignment for G.
- We say G is k-choosable if a proper L-coloring of G exists whenever L is a k-assignment for G.

List Coloring Terminology

- If $|L(v)|=k$ for each $v \in V(G)$, then we say L is a k-assignment for G.
- We say G is k-choosable if a proper L-coloring of G exists whenever L is a k-assignment for G.
- The smallest k such that G is k-choosable is called the list chromatic number of G, denoted $\chi_{\ell}(G)$.

List Coloring Terminology

- If $|L(v)|=k$ for each $v \in V(G)$, then we say L is a k-assignment for G.
- We say G is k-choosable if a proper L-coloring of G exists whenever L is a k-assignment for G.
- The smallest k such that G is k-choosable is called the list chromatic number of G, denoted $\chi_{\ell}(G)$.
- For example, the complete graph K_{n} is n-choosable. Also, $K_{2,4}$ is not 2-choosable.
$\{1,2,3,4\} \quad\{1,2,3,4\}$

$\{1,2,3,4\} \quad\{1,2,3,4\}$

Tim Wagstrom

Equitable List Coloring

- In 2003, Kostochka, Pelsmajer, and West introduced a list analogue of equitable coloring called equitable choosability.

Equitable List Coloring

- In 2003, Kostochka, Pelsmajer, and West introduced a list analogue of equitable coloring called equitable choosability.
- If G is a graph and L is a k-assignemt for G, a proper L-coloring of G is called an equitable L-coloring of G if the size of each color class is at most $\lceil|V(G)| / k\rceil$.

Equitable List Coloring

- In 2003, Kostochka, Pelsmajer, and West introduced a list analogue of equitable coloring called equitable choosability.
- If G is a graph and L is a k-assignemt for G, a proper L-coloring of G is called an equitable L-coloring of G if the size of each color class is at most $\lceil|V(G)| / k\rceil$.

Equitable List Coloring

- In 2003, Kostochka, Pelsmajer, and West introduced a list analogue of equitable coloring called equitable choosability.
- If G is a graph and L is a k-assignemt for G, a proper L-coloring of G is called an equitable L-coloring of G if the size of each color class is at most $\lceil|V(G)| / k\rceil$.

Equitable List Coloring

- In 2003, Kostochka, Pelsmajer, and West introduced a list analogue of equitable coloring called equitable choosability.
- If G is a graph and L is a k-assignemt for G, a proper L-coloring of G is called an equitable L-coloring of G if the size of each color class is at most $\lceil|V(G)| / k\rceil$.

Equitable List Coloring

- In 2003, Kostochka, Pelsmajer, and West introduced a list analogue of equitable coloring called equitable choosability.
- If G is a graph and L is a k-assignemt for G, a proper L-coloring of G is called an equitable L-coloring of G if the size of each color class is at most $\lceil|V(G)| / k\rceil$.

Equitable List Coloring

- In 2003, Kostochka, Pelsmajer, and West introduced a list analogue of equitable coloring called equitable choosability.
- If G is a graph and L is a k-assignemt for G, a proper L-coloring of G is called an equitable L-coloring of G if the size of each color class is at most $\lceil|V(G)| / k\rceil$.

- Unlike equitable coloring, our only concern in equitable choosability is not overusing any color.

Equitable Choosability Conjectures

Conjecture (Kostochka, Pelsmajer, and West (2003))
Every graph G is equitably k-choosable when $k \geq \Delta(G)+1$.

Equitable Choosability Conjectures

Conjecture (Kostochka, Pelsmajer, and West (2003))

Every graph G is equitably k-choosable when $k \geq \Delta(G)+1$.

Conjecture (Kostochka, Pelsmajer, and West (2003))

A connected graph G is equitably k-choosable for each $k \geq \Delta(G)$ if it is different from $K_{m}, C_{2 m+1}$, and $K_{2 m+1,2 m+1}$.

Results for $k<\Delta(G)$

Theorem (Kostochka, Pelsmajer, and West (2003))
 If G is a forest and $k \geq 1+\Delta(G) / 2$, then G is equitably k-choosable. Also for all D there is a tree with maximum degree at most D that is not equitably $\lceil D / 2\rceil$-choosable.

Results for $k<\Delta(G)$

Theorem (Kostochka, Pelsmajer, and West (2003))
 If G is a forest and $k \geq 1+\Delta(G) / 2$, then G is equitably k-choosable. Also for all D there is a tree with maximum degree at most D that is not equitably $\lceil D / 2\rceil$-choosable.

Conjecture (Kaul, Mudrock, and Pelsmajer (2018))

Let $T(G)$ denote the total graph of G. For every graph $G, T(G)$ is equitably k-choosable for each
$k \geq \max \left\{\chi_{\ell}(T(G)), \Delta(T(G)) / 2+2\right\}$.

Characterizations

Theorem (Mudrock, Chase, Kadera, Thornburgh, W. (2018))
$K_{1, m}$ is equitably k-choosable if and only if
$m \leq\lceil(m+1) / k\rceil(k-1)$.

Characterizations

Theorem (Mudrock, Chase, Kadera, Thornburgh, W. (2018))
$K_{1, m}$ is equitably k-choosable if and only if $m \leq\lceil(m+1) / k\rceil(k-1)$.

Theorem (Mudrock, Chase, Kadera, Thornburgh, W. (2018))
$K_{2, m}$ is equitably k-choosable if and only if $m \leq\lceil(m+2) / k\rceil(k-1)$.

Equitable Choosability of the Disjoint Union of Graphs

Theorem (Yap and Zhang (1997))

Suppose that $G_{1}, G_{2} \ldots G_{n}$ are pairwise vertex disjoint graphs and $G=\sum_{i=1}^{n} G_{i}$. If G_{i} has an equitable k-coloring for all $i=1,2, \ldots, n$ then G has an equitable k-coloring.

Equitable Choosability of the Disjoint Union of Graphs

Theorem (Yap and Zhang (1997))

Suppose that $G_{1}, G_{2} \ldots G_{n}$ are pairwise vertex disjoint graphs and $G=\sum_{i=1}^{n} G_{i}$. If G_{i} has an equitable k-coloring for all $i=1,2, \ldots, n$ then G has an equitable k-coloring.

- Question: Does this hold for equitable choosability?

Equitable Choosability of the Disjoint Union of Graphs

Theorem (Yap and Zhang (1997))

Suppose that $G_{1}, G_{2} \ldots G_{n}$ are pairwise vertex disjoint graphs and $G=\sum_{i=1}^{n} G_{i}$. If G_{i} has an equitable k-coloring for all $i=1,2, \ldots, n$ then G has an equitable k-coloring.

- Question: Does this hold for equitable choosability?

Figure: Both $K_{1,6}$ and $K_{1,1}$ are equitably 3-choosable. However, $K_{1,6}+K_{1,1}$ is not equitably 3 -choosable

Motivating Question

Question

Suppose that $n \geq 2$. For which $k, m_{1}, m_{2}, \ldots, m_{n} \in \mathbb{N}$ is $\sum_{i=1}^{n} K_{1, m_{i}}$ equitably k-choosable?

Complexity

- STARS EQUITABLE 2-COLORING: Instance: An n-tuple $\left(m_{1}, \ldots, m_{n}\right)$ such that $m_{i} \in \mathbb{N}$ for each $i \in[n]$.
Question: Is $\sum_{i=1}^{n} K_{1, m_{i}}$ equitably 2-colorable?

Complexity

- STARS EQUITABLE 2-COLORING: Instance: An n-tuple $\left(m_{1}, \ldots, m_{n}\right)$ such that $m_{i} \in \mathbb{N}$ for each $i \in[n]$.
Question: Is $\sum_{i=1}^{n} K_{1, m_{i}}$ equitably 2-colorable?

Theorem (Kaul, Mudrock, and W. (2020)) STARS EQUITABLE 2-COLORING is NP-complete.

Complexity

- STARS EQUITABLE 2-COLORING: Instance: An n-tuple $\left(m_{1}, \ldots, m_{n}\right)$ such that $m_{i} \in \mathbb{N}$ for each $i \in[n]$.
Question: Is $\sum_{i=1}^{n} K_{1, m_{i}}$ equitably 2-colorable?

Theorem (Kaul, Mudrock, and W. (2020))
 STARS EQUITABLE 2-COLORING is NP-complete.

- Question: Why do we care about equitable 2-colorability?

Complexity

- STARS EQUITABLE 2-COLORING: Instance: An n-tuple $\left(m_{1}, \ldots, m_{n}\right)$ such that $m_{i} \in \mathbb{N}$ for each $i \in[n]$.
Question: Is $\sum_{i=1}^{n} K_{1, m_{i}}$ equitably 2-colorable?

Theorem (Kaul, Mudrock, and W. (2020))
 STARS EQUITABLE 2-COLORING is NP-complete.

- Question: Why do we care about equitable 2-colorability?
- If a graph is not equitably 2-colorable then it is also not equitably 2-choosable.

STARS EQUITABLE 2-CHOOSABLITY

- STARS EQUITABLE 2-CHOOSABLITY:

Instance: An n-tuple $\left(m_{1}, \ldots, m_{n}\right)$ such that $m_{i} \in \mathbb{N}$ for each $i \in[n]$.
Question: Is $\sum_{i=1}^{n} K_{1, m_{i}}$ equitably 2-choosable?

STARS EQUITABLE 2-CHOOSABLITY

- STARS EQUITABLE 2-CHOOSABLITY:

Instance: An n-tuple $\left(m_{1}, \ldots, m_{n}\right)$ such that $m_{i} \in \mathbb{N}$ for each $i \in[n]$.
Question: Is $\sum_{i=1}^{n} K_{1, m_{i}}$ equitably 2-choosable?

Question

Is STARS EQUITABLE 2-CHOOSABLITY NP-hard?

Proof of Complexity for STARS EQUITABLE 2-COLORING

- It is easy to show that STARS EQUITABLE 2-COLORING is in NP.

Proof of Complexity for STARS EQUITABLE 2-COLORING

- It is easy to show that STARS EQUITABLE 2-COLORING is in NP.
- We use the NP-complete decision problem PARTITION:

Instance: An n-tuple $\left(m_{1}, \ldots, m_{n}\right)$ such that $m_{i} \in \mathbb{N}$ for each $i \in[n]$.
Question: Is there a partition $\{A, B\}$ of the set $[n]$ such that $\sum_{i \in A} m_{i}=\sum_{j \in B} m_{j}$?

Proof of Complexity for STARS EQUITABLE 2-COLORING

- It is easy to show that STARS EQUITABLE 2-COLORING is in NP.
- We use the NP-complete decision problem PARTITION:

Instance: An n-tuple $\left(m_{1}, \ldots, m_{n}\right)$ such that $m_{i} \in \mathbb{N}$ for each $i \in[n]$.
Question: Is there a partition $\{A, B\}$ of the set $[n]$ such that $\sum_{i \in A} m_{i}=\sum_{j \in B} m_{j}$?

Lemma

There is a partition $\{A, B\}$ of the set $[n]$ such that
$\sum_{i \in A} m_{i}=\sum_{j \in B} m_{j}$ if and only if $G=\sum_{i=1}^{n} K_{1, m_{i}+1}$ is equitably 2-colorable.

Proof of Complexity for STARS EQUITABLE 2-COLORING cont.

- We will now demonstrate this reduction on $(1,1,3,5)$.

Proof of Complexity for STARS EQUITABLE 2-COLORING cont.

- We will now demonstrate this reduction on $(1,1,3,5)$.
- If we partition [4] as follows $\{\{1,2,3\},\{4\}\}$ we have that $1+1+3=5$ as desired.

Proof of Complexity for STARS EQUITABLE 2-COLORING cont.

- We will now demonstrate this reduction on (1, 1, 3, 5).
- If we partition [4] as follows $\{\{1,2,3\},\{4\}\}$ we have that $1+1+3=5$ as desired.
- Let $y=(1+1,1+1,3+1,5+1)$ be the input for STARS EQUITABLE 2-COLORING.

Figure: Is this graph equitably 2 -colorable?

Proof of Complexity for STARS EQUITABLE 2-COLORING cont.

- We will now demonstrate this reduction on $(1,1,3,5)$. If we partition [4] as follows $\{\{1,2,3\},\{4\}\}$ we have that $1+1+3=5$ as desired.
- Let $y=(1+1,1+1,3+1,5+1)$ be the input for STARS EQUITABLE 2-COLORING.

Figure: Is this graph equitably 2 -colorable?

Proof of Complexity for STARS EQUITABLE 2-COLORING cont.

- Now suppose that we are given the n-tuple $(1,1,3,5)$ and the following coloring f for the graph G.

Proof of Complexity for STARS EQUITABLE 2-COLORING cont.

- Now suppose that we are given the n-tuple $(1,1,3,5)$ and the following coloring f for the graph G.

- We want to find a partion $\{A, B\}$ of $[4]$ such that

$$
\sum_{i \in A} m_{i}=\sum_{j \in B} m_{j} .
$$

Proof of Complexity cont.

Proof of Complexity cont.

- We let A_{i} and B_{i} be the partite set of G_{i} of size 1 and $m_{i}+1$ respectively.

Proof of Complexity cont.

- We let A_{i} and B_{i} be the partite set of G_{i} of size 1 and $m_{i}+1$ respectively.
- Let $A=\left\{i \in[4]: f^{-1}\left(B_{i}\right)=\{1\}\right\}=\{1,2,3\}$ and $B=[n]-A=\{4\}$.

Proof of Complexity cont.

- We let A_{i} and B_{i} be the partite set of G_{i} of size 1 and $m_{i}+1$ respectively.
- Let $A=\left\{i \in[4]: f^{-1}\left(B_{i}\right)=\{1\}\right\}=\{1,2,3\}$ and $B=[n]-A=\{4\}$.
- We then have that

$$
4+5=9=\left|f^{-1}(1)\right|=\sum_{i \in A}\left|B_{i}\right|+\sum_{j \in B}\left|A_{j}\right|=1+\sum_{i \in A}\left(m_{i}+1\right)=4+\sum_{i \in A} m_{i}
$$

Proof of Complexity cont.

- We let A_{i} and B_{i} be the partite set of G_{i} of size 1 and $m_{i}+1$ respectively.
- Let $A=\left\{i \in[4]: f^{-1}\left(B_{i}\right)=\{1\}\right\}=\{1,2,3\}$ and $B=[n]-A=\{4\}$.
- We then have that

$$
\begin{aligned}
& 4+5=9=\left|f^{-1}(1)\right|=\sum_{i \in A}\left|B_{i}\right|+\sum_{j \in B}\left|A_{j}\right|=1+\sum_{i \in A}\left(m_{i}+1\right)=4+\sum_{i \in A} m_{i} \\
& 4+5=9=\left|f^{-1}(2)\right|=\sum_{i \in A}\left|A_{i}\right|+\sum_{j \in B}\left|B_{j}\right|=3+\sum_{j \in B}\left(m_{j}+1\right)=4+\sum_{j \in B} m_{j} .
\end{aligned}
$$

Equitable 2-choosability

> Theorem (Kaul, Mudrock, and $\mathrm{W} .(2020)$)
> Let $G=K_{1, m_{1}}+K_{1, m_{2}}$ where $1 \leq m_{1} \leq m_{2}$. G is equitably 2-choosable if and only if $m_{2}-m_{1} \leq 1$ and $m_{1}+m_{2} \leq 15$.

Equitable 2-choosability

Theorem (Kaul, Mudrock, and W. (2020))

Let $G=K_{1, m_{1}}+K_{1, m_{2}}$ where $1 \leq m_{1} \leq m_{2}$. G is equitably
2 -choosable if and only if $m_{2}-m_{1} \leq 1$ and $m_{1}+m_{2} \leq 15$.

Theorem (Kaul, Mudrock, and W. (2020))

Suppose that $n, m \in \mathbb{N}, n \geq 2$, and that $G=\sum_{i=1}^{n} K_{1, m}$. When n is odd, G is equitably 2 -choosable if and only if $m \leq 2$. When n is even, G is equitably 2-choosable if and only if $m \leq 7$.

Equitable 2-choosability

Theorem (Kaul, Mudrock, and W. (2020))

Let $G=K_{1, m_{1}}+K_{1, m_{2}}$ where $1 \leq m_{1} \leq m_{2}$. G is equitably
2 -choosable if and only if $m_{2}-m_{1} \leq 1$ and $m_{1}+m_{2} \leq 15$.

Theorem (Kaul, Mudrock, and W. (2020))

Suppose that $n, m \in \mathbb{N}, n \geq 2$, and that $G=\sum_{i=1}^{n} K_{1, m}$. When n is odd, G is equitably 2 -choosable if and only if $m \leq 2$. When n is even, G is equitably 2 -choosable if and only if $m \leq 7$.

Question

Suppose that $n \geq 2$. Are there only finitely many equitably 2-choosable graphs (up to isomorphism) that are the disjoint union of n stars?

Equitable 2-Choosability of the Disjoint Union of 2 Stars

Theorem (Kaul, Mudrock, and W. (2020))
Let $G=K_{1, m_{1}}+K_{1, m_{2}}$ where $1 \leq m_{1} \leq m_{2}$. G is equitably 2-choosable if and only if $m_{2}-m_{1} \leq 1$ and $m_{1}+m_{2} \leq 15$.

Equitable 2-Choosability of the Disjoint Union of 2 Stars

Theorem (Kaul, Mudrock, and W. (2020))
 Let $G=K_{1, m_{1}}+K_{1, m_{2}}$ where $1 \leq m_{1} \leq m_{2}$. G is equitably 2 -choosable if and only if $m_{2}-m_{1} \leq 1$ and $m_{1}+m_{2} \leq 15$.

- We need to show the following
- If $m_{2}-m_{1}>1$ or $m_{1}+m_{2}>15$ then G is not equitably 2-choosable.

Equitable 2-Choosability of the Disjoint Union of 2 Stars

Theorem (Kaul, Mudrock, and W. (2020))

Let $G=K_{1, m_{1}}+K_{1, m_{2}}$ where $1 \leq m_{1} \leq m_{2}$. G is equitably 2 -choosable if and only if $m_{2}-m_{1} \leq 1$ and $m_{1}+m_{2} \leq 15$.

- We need to show the following
- If $m_{2}-m_{1}>1$ or $m_{1}+m_{2}>15$ then G is not equitably 2-choosable.
- If $m_{2}-m_{1} \leq 1$ and $m_{1}+m_{2} \leq 15$ then G is equitably 2-choosable.

$m_{2}-m_{1}>1$

- Consider the following example:

Figure: Is this graph equitably L-colorable?

$m_{2}-m_{1}>1$

- Consider the following example:

Figure: Is this graph equitably L-colorable?

$m_{2}-m_{1}>1$

- Consider the following example:

Figure: Is this graph equitably L-colorable?

$m_{2}-m_{1}>1$

- Consider the following example:

Figure: Is this graph equitably L-colorable?

$m_{1}+m_{2}>15$

- Consider the following example:

Figure: Is this graph equitably L-colorable?

$m_{1}+m_{2}>15$

- Consider the following example:

Figure: Is this graph equitably L-colorable?

$m_{1}+m_{2}>15$

- Consider the following example:

Figure: Is this graph equitably L-colorable?

$m_{1}+m_{2}>15$

- Consider the following example:

Figure: Is this graph equitably L-colorable?

$m_{1}+m_{2}>15$

- Consider the following example:

Figure: Is this graph equitably L-colorable?

$m_{1}+m_{2}>15$

- Consider the following example:

Figure: Is this graph equitably L-colorable?

The Other Direction

- We now need to show that if $m_{2}-m_{1} \leq 1$ and $m_{1}+m_{2} \leq 15$ then G is equitably 2 -choosable.

The Other Direction

- We now need to show that if $m_{2}-m_{1} \leq 1$ and $m_{1}+m_{2} \leq 15$ then G is equitably 2 -choosable.

Lemma

Let $G=G_{1}+G_{2}$ where both G_{1} and G_{2} are copies of $K_{1, m}$ such that $m \in[7]$.Suppose the bipartition of G_{1} is $\left\{w_{0}\right\}$, $A=\left\{w_{1}, \ldots, w_{m}\right\}$, and the bipartition of G_{2} is $\left\{u_{0}\right\}$, $B=\left\{u_{1}, \ldots, u_{m}\right\}$. If L is a 2 -assignment for G such that $L\left(w_{0}\right) \cap L\left(u_{0}\right)=\emptyset$, then G is equitably L-colorable.

The Other Direction

- We now need to show that if $m_{2}-m_{1} \leq 1$ and $m_{1}+m_{2} \leq 15$ then G is equitably 2 -choosable.

Lemma

Let $G=G_{1}+G_{2}$ where both G_{1} and G_{2} are copies of $K_{1, m}$ such that $m \in[7]$. Suppose the bipartition of G_{1} is $\left\{w_{0}\right\}$, $A=\left\{w_{1}, \ldots, w_{m}\right\}$, and the bipartition of G_{2} is $\left\{u_{0}\right\}$, $B=\left\{u_{1}, \ldots, u_{m}\right\}$. If L is a 2-assignment for G such that $L\left(w_{0}\right) \cap L\left(u_{0}\right)=\emptyset$, then G is equitably L-colorable.

Lemma

Let $G=K_{1, m}+K_{1, m}$ where $m \in[7]$. Then G is equitably 2-choosable.

The Case of $K_{1, m}+K_{1, m+1}$

- What do we do when we have $K_{1, m}+K_{1, m+1}$?

The Case of $K_{1, m}+K_{1, m+1}$

- What do we do when we have $K_{1, m}+K_{1, m+1}$?

The Case of $K_{1, m}+K_{1, m+1}$

- What do we do when we have $K_{1, m}+K_{1, m+1}$?

The Case of $K_{1, m}+K_{1, m+1}$

- What do we do when we have $K_{1, m}+K_{1, m+1}$?

The Case of $K_{1, m}+K_{1, m+1}$

- What do we do when we have $K_{1, m}+K_{1, m+1}$?

The Equitable 2-choosability of n Stars

Theorem (Kaul, Mudrock, and W. (2020))
Suppose that $n, m \in \mathbb{N}, n \geq 2$, and that $G=\sum_{i=1}^{n} K_{1, m}$. When n is odd, G is equitably 2 -choosable if and only if $m \leq 2$. When n is even, G is equitably 2 -choosable if and only if $m \leq 7$.

The Equitable 2-choosability of n Stars

Theorem (Kaul, Mudrock, and W. (2020))
Suppose that $n, m \in \mathbb{N}, n \geq 2$, and that $G=\sum_{i=1}^{n} K_{1, m}$. When n is odd, G is equitably 2 -choosable if and only if $m \leq 2$. When n is even, G is equitably 2 -choosable if and only if $m \leq 7$.

- The odd case is easy.

The Equitable 2-choosability of n Stars

Theorem (Kaul, Mudrock, and W. (2020))
Suppose that $n, m \in \mathbb{N}, n \geq 2$, and that $G=\sum_{i=1}^{n} K_{1, m}$. When n is odd, G is equitably 2 -choosable if and only if $m \leq 2$. When n is even, G is equitably 2 -choosable if and only if $m \leq 7$.

- The odd case is easy.
- For the even case when $m \geq 8$ we use a list assignment similar to $K_{1,8}+K_{1,8}$.

The Equitable 2-choosability of n Stars

Theorem (Kaul, Mudrock, and W. (2020))
Suppose that $n, m \in \mathbb{N}, n \geq 2$, and that $G=\sum_{i=1}^{n} K_{1, m}$. When n is odd, G is equitably 2 -choosable if and only if $m \leq 2$. When n is even, G is equitably 2-choosable if and only if $m \leq 7$.

- The odd case is easy.
- For the even case when $m \geq 8$ we use a list assignment similar to $K_{1,8}+K_{1,8}$.
- When $m \leq 7$ we divide the stars into pairs and color the pairs.

Equitable k-Choosability

```
Theorem (Kaul, Mudrock, and W. (2020))
Let }k\in\mathbb{N}\mathrm{ and m}\mp@subsup{m}{1}{}\leq\mp@subsup{m}{2}{}\mathrm{ .
If m
and m}\mp@subsup{m}{1}{}+\mp@subsup{m}{2}{}\leq15+\lceil(\mp@subsup{m}{2}{}+\mp@subsup{m}{1}{}+2)/k\rceil(k-2) the
K
```


Necessity of the First Condition

- What happens if $m_{2}>\left\lceil\left(m_{1}+m_{2}+2\right) / k\right\rceil(k-1)-1$?

Necessity of the First Condition

- What happens if $m_{2}>\left\lceil\left(m_{1}+m_{2}+2\right) / k\right\rceil(k-1)-1$?

Lemma
 If $m_{2}>\left\lceil\left(m_{2}+m_{1}+2\right) / k\right\rceil(k-1)-1$ then G is not equitably k-choosable

Improving the Second Condition

- recall the second condition

$$
m_{1}+m_{2} \leq 15+\left\lceil\left(m_{1}+m_{2}+2\right) / k\right\rceil(k-2) .
$$

Improving the Second Condition

- recall the second condition

$$
m_{1}+m_{2} \leq 15+\left\lceil\left(m_{1}+m_{2}+2\right) / k\right\rceil(k-2) .
$$

Proposition
$K_{1,8}+K_{1,9(k-1)-1}$ is equitably k-choosable for all $k \geq 3$

Improving the Second Condition

- recall the second condition

$$
m_{1}+m_{2} \leq 15+\left\lceil\left(m_{1}+m_{2}+2\right) / k\right\rceil(k-2) .
$$

Proposition

$K_{1,8}+K_{1,9(k-1)-1}$ is equitably k-choosable for all $k \geq 3$

$$
\begin{aligned}
8+9(k-1)-1 & \leq 15+\lceil(8+9(k-1)-1+2) / k\rceil(k-2) \\
9(k-1)+7 & \leq 15+9(k-2) \\
9 k-2 & \leq 9 k-3
\end{aligned}
$$

Improving the Second Condition cont.

- recall the second condition

$$
m_{1}+m_{2} \leq 15+\left\lceil\left(m_{1}+m_{2}+2\right) / k\right\rceil(k-2) .
$$

Proposition

$K_{1,(k-1)\left(k^{3}-k+2\right)}+K_{1, k^{3}}$ is not equitably k-choosable for all $k \geq 2$.

Improving the Second Condition cont.

- recall the second condition

$$
m_{1}+m_{2} \leq 15+\left\lceil\left(m_{1}+m_{2}+2\right) / k\right\rceil(k-2) .
$$

Proposition

$K_{1,(k-1)\left(k^{3}-k+2\right)}+K_{1, k^{3}}$ is not equitably k-choosable for all $k \geq 2$.

$$
\begin{aligned}
k^{4}-k^{2}+3 k-2 & \leq 15+\left\lceil\frac{k^{3}+(k-1)\left(k^{3}-k+2\right)+2}{k}\right\rceil(k-2) \\
k^{4}-k^{2}+3 k-2 & \leq 15+\left(k^{3}-k+1\right)(k-2) \\
k^{4}-k^{2}+3 k-2 & \leq k^{4}-2 k^{3}-k^{2}+3 k+13 \\
2 k^{3} & \leq 15
\end{aligned}
$$

Proof of Equitable k-Choosability

Process

є-greedy process:

Proof of Equitable k-Choosability

Process

є-greedy process:

- Input: a graph $G=G_{1}+G_{2}$ where G_{i} is a copy of $K_{1, m_{i}}$ for $i \in[2]$, and a k-assignment L where $k \geq 3$.

Proof of Equitable k-Choosability

Process

ϵ-greedy process:

- Input: a graph $G=G_{1}+G_{2}$ where G_{i} is a copy of $K_{1, m_{i}}$ for $i \in[2]$, and a k-assignment L where $k \geq 3$.
- Output: G_{ϵ} where G_{ϵ} is an induced subgraph of G, a list assignment L_{ϵ} for G_{ϵ}, and a partial L-coloring g_{ϵ} of G that colors the vertices in $V(G)-V\left(G_{\epsilon}\right)$.

Proof of Equitable k-Choosability

Process

ϵ-greedy process:

- Input: a graph $G=G_{1}+G_{2}$ where G_{i} is a copy of $K_{1, m_{i}}$ for $i \in[2]$, and a k-assignment L where $k \geq 3$.
- Output: G_{ϵ} where G_{ϵ} is an induced subgraph of G, a list assignment L_{ϵ} for G_{ϵ}, and a partial L-coloring g_{ϵ} of G that colors the vertices in $V(G)-V\left(G_{\epsilon}\right)$.
- We use this to justify the existence of the extremal choice for the partial list colorings.

Example of ϵ-greedy process

- We will demonstrate how the ϵ-greedy process works with the following example.

Example of ϵ-greedy process

- We will demonstrate how the ϵ-greedy process works with the following example.

Example of ϵ-greedy process

- We will demonstrate how the ϵ-greedy process works with the following example.

Example of ϵ-greedy process

- We will demonstrate how the ϵ-greedy process works with the following example.

The Extermal choice

- We want a partial coloring that minimizes the difference between the uncolored vertices in each star.

The Extermal choice

- We want a partial coloring that minimizes the difference between the uncolored vertices in each star.
- This extremal choice lets us apply the previous theorem to help finish this coloring.

Questions

- Questions?

Question

Suppose that $n \geq 2$. For which $k, m_{1}, m_{2}, \ldots, m_{n} \in \mathbb{N}$ is $\sum_{i=1}^{n} K_{1, m_{i}}$ equitably k-choosable?

Question

Is STARS EQUITABLE 2-CHOOSABLITY NP-hard?

Question

Suppose that $n \geq 2$. Are there only finitely many equitably 2-choosable graphs (up to isomorphism) that are the disjoint union of n stars?

