Equitable Choosability of the Disjoint Union of Stars

Tim Wagstrom

University of Illinois at Chicago

11/6/2020

Joint work with Hemanshu Kaul and Jeffrey Mudrock

Tim Wagstrom

A *proper* k-coloring of a graph G is a labeling
f: V(G) → S, where |S| = k and f(u) ≠ f(v) whenever u and v are adjacent in G.

A *proper* k-coloring of a graph G is a labeling
f: V(G) → S, where |S| = k and f(u) ≠ f(v) whenever u and v are adjacent in G.

 The *chromatic number* of a graph G, denoted χ(G), is the smallest k such that G has a proper k-coloring.

• A *proper* k-*coloring* of a graph G is a labeling $f: V(G) \rightarrow S$, where |S| = k and $f(u) \neq f(v)$ whenever u and v are adjacent in G.

- The *chromatic number* of a graph G, denoted χ(G), is the smallest k such that G has a proper k-coloring.
- For a color c ∈ S, the color class of c, denoted by f⁻¹(c), is the set of vertices to which f assigns the color c.

• A *proper* k-*coloring* of a graph G is a labeling $f: V(G) \rightarrow S$, where |S| = k and $f(u) \neq f(v)$ whenever u and v are adjacent in G.

- The *chromatic number* of a graph G, denoted χ(G), is the smallest k such that G has a proper k-coloring.
- For a color c ∈ S, the color class of c, denoted by f⁻¹(c), is the set of vertices to which f assigns the color c.
- Note that the color classes are independent sets.

Tim Wagstrom

• An *equitable k*-*coloring* of a graph *G* is a proper *k*-coloring of *G* such that the sizes of the color classes differ by at most one.

- An *equitable k*-*coloring* of a graph *G* is a proper *k*-coloring of *G* such that the sizes of the color classes differ by at most one.
- Note that for an equitable *k*-coloring *f* of a graph *G*, $\lfloor |V(G)|/k \rfloor \leq |f^{-1}(c)| \leq \lceil |V(G)|/k \rceil$ for each color *c*.

Figure: Is $G = K_{3,3}$ equitably 4-colorable?

Equitable Coloring

- An *equitable k*-*coloring* of a graph *G* is a proper *k*-coloring of *G* such that the sizes of the color classes differ by at most one.
- Note that for an equitable *k*-coloring *f* of a graph *G*, $\lfloor |V(G)|/k \rfloor \leq |f^{-1}(c)| \leq \lceil |V(G)|/k \rceil$ for each color *c*.

Figure: Is $G = K_{3,3}$ equitably 4-colorable? Yes. We have that $\lfloor 6/4 \rfloor = 1$ and $\lceil 6/4 \rceil = 2$.

Equitable Coloring

- An *equitable k*-*coloring* of a graph *G* is a proper *k*-coloring of *G* such that the sizes of the color classes differ by at most one.
- Note that for an equitable *k*-coloring *f* of a graph *G*, $\lfloor |V(G)|/k \rfloor \leq |f^{-1}(c)| \leq \lceil |V(G)|/k \rceil$ for each color *c*.

Figure: Is $G = K_{3,3}$ equitably 4-colorable? Yes. We have that $\lfloor 6/4 \rfloor = 1$ and $\lceil 6/4 \rceil = 2$.

• Note that $K_{3,3}$ is equitably 2-colorable but not equitably 3-colorable.

Tim Wagstrom

Important Theorems and Conjectures for Equitable Coloring

Theorem (Hajnal and Szemeredi(1970))

Every graph G has an equitable k-coloring when $k \ge \Delta(G) + 1$.

Important Theorems and Conjectures for Equitable Coloring

Theorem (Hajnal and Szemeredi(1970))

Every graph G has an equitable k-coloring when $k \ge \Delta(G) + 1$.

Conjecture (Chen, Lih, and Wu (1994))

A connected graph G is equitably $\Delta(G)$ -colorable if it is different from K_m , C_{2m+1} , and $K_{2m+1,2m+1}$.

Important Theorems and Conjectures for Equitable Coloring

Theorem (Hajnal and Szemeredi(1970))

Every graph G has an equitable k-coloring when $k \ge \Delta(G) + 1$.

Conjecture (Chen, Lih, and Wu (1994))

A connected graph G is equitably $\Delta(G)$ -colorable if it is different from K_m , C_{2m+1} , and $K_{2m+1,2m+1}$.

Theorem (Yap and Zhang (1997))

Suppose that $G_1, G_2 \dots G_n$ are pairwise vertex disjoint graphs and $G = \sum_{i=1}^{n} G_i$. If G_i has an equitable k-coloring for all $i = 1, 2, \dots, n$ then G has an equitable k-coloring.

A *proper* L-coloring of G is a proper coloring f of G such that f(v) ∈ L(v) for each v ∈ V(G).

- A *proper* L-coloring of G is a proper coloring f of G such that f(v) ∈ L(v) for each v ∈ V(G).
- The **palette** of a list assignment *L* is $\mathcal{L} = \bigcup_{v \in V(G)} L(v)$

• If |L(v)| = k for each $v \in V(G)$, then we say L is a k-assignment for G.

- If |L(v)| = k for each v ∈ V(G), then we say L is a k-assignment for G.
- We say *G* is *k*-choosable if a proper *L*-coloring of *G* exists whenever *L* is a *k*-assignment for *G*.

- If |L(v)| = k for each v ∈ V(G), then we say L is a k-assignment for G.
- We say *G* is *k*-choosable if a proper *L*-coloring of *G* exists whenever *L* is a *k*-assignment for *G*.
- The smallest k such that G is k-choosable is called the *list* chromatic number of G, denoted χ_ℓ(G).

- If |L(v)| = k for each v ∈ V(G), then we say L is a k-assignment for G.
- We say *G* is *k*-choosable if a proper *L*-coloring of *G* exists whenever *L* is a *k*-assignment for *G*.
- The smallest k such that G is k-choosable is called the *list* chromatic number of G, denoted χ_ℓ(G).
- For example, the complete graph K_n is *n*-choosable. Also, $K_{2,4}$ is not 2-choosable.

 In 2003, Kostochka, Pelsmajer, and West introduced a list analogue of equitable coloring called *equitable choosability*.

- In 2003, Kostochka, Pelsmajer, and West introduced a list analogue of equitable coloring called *equitable choosability*.
- If G is a graph and L is a k-assignemt for G, a proper L-coloring of G is called an *equitable L-coloring* of G if the size of each color class is at most [|V(G)|/k].

- In 2003, Kostochka, Pelsmajer, and West introduced a list analogue of equitable coloring called *equitable choosability*.
- If G is a graph and L is a k-assignemt for G, a proper L-coloring of G is called an *equitable L-coloring* of G if the size of each color class is at most [|V(G)|/k].

- In 2003, Kostochka, Pelsmajer, and West introduced a list analogue of equitable coloring called *equitable choosability*.
- If G is a graph and L is a k-assignemt for G, a proper L-coloring of G is called an *equitable L-coloring* of G if the size of each color class is at most [|V(G)|/k].

- In 2003, Kostochka, Pelsmajer, and West introduced a list analogue of equitable coloring called *equitable choosability*.
- If G is a graph and L is a k-assignemt for G, a proper L-coloring of G is called an *equitable L-coloring* of G if the size of each color class is at most [|V(G)|/k].

- In 2003, Kostochka, Pelsmajer, and West introduced a list analogue of equitable coloring called *equitable choosability*.
- If G is a graph and L is a k-assignemt for G, a proper L-coloring of G is called an *equitable L-coloring* of G if the size of each color class is at most [|V(G)|/k].

- In 2003, Kostochka, Pelsmajer, and West introduced a list analogue of equitable coloring called *equitable choosability*.
- If G is a graph and L is a k-assignemt for G, a proper L-coloring of G is called an *equitable L-coloring* of G if the size of each color class is at most [|V(G)|/k].

• Unlike equitable coloring, our only concern in equitable choosability is not overusing any color.

Conjecture (Kostochka, Pelsmajer, and West (2003))

Every graph G is equitably k-choosable when $k \ge \Delta(G) + 1$.

Conjecture (Kostochka, Pelsmajer, and West (2003))

Every graph G is equitably k-choosable when $k \ge \Delta(G) + 1$.

Conjecture (Kostochka, Pelsmajer, and West (2003))

A connected graph G is equitably k-choosable for each $k \ge \Delta(G)$ if it is different from K_m , C_{2m+1} , and $K_{2m+1,2m+1}$.

Theorem (Kostochka, Pelsmajer, and West (2003))

If G is a forest and $k \ge 1 + \Delta(G)/2$, then G is equitably k-choosable. Also for all D there is a tree with maximum degree at most D that is not equitably $\lceil D/2 \rceil$ -choosable.

Theorem (Kostochka, Pelsmajer, and West (2003))

If G is a forest and $k \ge 1 + \Delta(G)/2$, then G is equitably *k*-choosable. Also for all D there is a tree with maximum degree at most D that is not equitably $\lceil D/2 \rceil$ -choosable.

Conjecture (Kaul, Mudrock, and Pelsmajer (2018))

Let T(G) denote the total graph of G. For every graph G, T(G) is equitably k-choosable for each $k \ge \max\{\chi_{\ell}(T(G)), \Delta(T(G))/2 + 2\}.$

Theorem (Mudrock, Chase, Kadera, Thornburgh, W. (2018))

 $K_{1,m}$ is equitably k-choosable if and only if $m \leq \lceil (m+1)/k \rceil (k-1)$.

Theorem (Mudrock, Chase, Kadera, Thornburgh, W. (2018))

 $K_{1,m}$ is equitably k-choosable if and only if $m \leq \lceil (m+1)/k \rceil (k-1)$.

Theorem (Mudrock, Chase, Kadera, Thornburgh, W. (2018))

 $K_{2,m}$ is equitably k-choosable if and only if $m \leq \lceil (m+2)/k \rceil (k-1)$.

Equitable Choosability of the Disjoint Union of Graphs

Theorem (Yap and Zhang (1997))

Suppose that $G_1, G_2 \dots G_n$ are pairwise vertex disjoint graphs and $G = \sum_{i=1}^{n} G_i$. If G_i has an equitable k-coloring for all $i = 1, 2, \dots, n$ then G has an equitable k-coloring.

Equitable Choosability of the Disjoint Union of Graphs

Theorem (Yap and Zhang (1997))

Suppose that $G_1, G_2 \dots G_n$ are pairwise vertex disjoint graphs and $G = \sum_{i=1}^{n} G_i$. If G_i has an equitable k-coloring for all $i = 1, 2, \dots, n$ then G has an equitable k-coloring.

• Question: Does this hold for equitable choosability?

Equitable Choosability of the Disjoint Union of Graphs

Theorem (Yap and Zhang (1997))

Suppose that $G_1, G_2 \dots G_n$ are pairwise vertex disjoint graphs and $G = \sum_{i=1}^{n} G_i$. If G_i has an equitable k-coloring for all $i = 1, 2, \dots, n$ then G has an equitable k-coloring.

• Question: Does this hold for equitable choosability?

Question

Suppose that $n \ge 2$. For which $k, m_1, m_2, ..., m_n \in \mathbb{N}$ is $\sum_{i=1}^{n} K_{1,m_i}$ equitably *k*-choosable?

Instance: An *n*-tuple $(m_1, ..., m_n)$ such that $m_i \in \mathbb{N}$ for each $i \in [n]$. Question: Is $\sum_{i=1}^n K_{1,m_i}$ equitably 2-colorable?

Instance: An *n*-tuple $(m_1, ..., m_n)$ such that $m_i \in \mathbb{N}$ for each $i \in [n]$. *Question*: Is $\sum_{i=1}^n K_{1,m_i}$ equitably 2-colorable?

Theorem (Kaul, Mudrock, and W. (2020))

STARS EQUITABLE 2-COLORING is NP-complete.

Instance: An *n*-tuple $(m_1, ..., m_n)$ such that $m_i \in \mathbb{N}$ for each $i \in [n]$. *Question*: Is $\sum_{i=1}^n K_{1,m_i}$ equitably 2-colorable?

Theorem (Kaul, Mudrock, and W. (2020))

STARS EQUITABLE 2-COLORING is NP-complete.

Question: Why do we care about equitable 2-colorability?

Instance: An *n*-tuple $(m_1, ..., m_n)$ such that $m_i \in \mathbb{N}$ for each $i \in [n]$. *Question*: Is $\sum_{i=1}^n K_{1,m_i}$ equitably 2-colorable?

Theorem (Kaul, Mudrock, and W. (2020))

STARS EQUITABLE 2-COLORING is NP-complete.

- Question: Why do we care about equitable 2-colorability?
- If a graph is not equitably 2-colorable then it is also not equitably 2-choosable.

• STARS EQUITABLE 2-CHOOSABLITY:

Instance: An *n*-tuple (m_1, \ldots, m_n) such that $m_i \in \mathbb{N}$ for each $i \in [n]$. Question: Is $\sum_{i=1}^n K_{1,m_i}$ equitably 2-choosable?

• STARS EQUITABLE 2-CHOOSABLITY:

Instance: An *n*-tuple (m_1, \ldots, m_n) such that $m_i \in \mathbb{N}$ for each $i \in [n]$. *Question*: Is $\sum_{i=1}^n K_{1,m_i}$ equitably 2-choosable?

Question

Is STARS EQUITABLE 2-CHOOSABLITY NP-hard?

 It is easy to show that STARS EQUITABLE 2-COLORING is in NP.

- It is easy to show that STARS EQUITABLE 2-COLORING is in NP.
- We use the NP-complete decision problem PARTITION:

Instance: An *n*-tuple (m_1, \ldots, m_n) such that $m_i \in \mathbb{N}$ for each $i \in [n]$.

Question: Is there a partition $\{A, B\}$ of the set [n] such that $\sum_{i \in A} m_i = \sum_{j \in B} m_j$?

- It is easy to show that STARS EQUITABLE 2-COLORING is in NP.
- We use the NP-complete decision problem PARTITION:

Instance: An *n*-tuple (m_1, \ldots, m_n) such that $m_i \in \mathbb{N}$ for each $i \in [n]$.

Question: Is there a partition $\{A, B\}$ of the set [n] such that $\sum_{i \in A} m_i = \sum_{j \in B} m_j$?

Lemma

There is a partition {A, B} of the set [n] such that $\sum_{i \in A} m_i = \sum_{j \in B} m_j$ if and only if $G = \sum_{i=1}^n K_{1,m_i+1}$ is equitably 2-colorable.

• We will now demonstrate this reduction on (1, 1, 3, 5).

- We will now demonstrate this reduction on (1, 1, 3, 5).
- If we partition [4] as follows $\{\{1,2,3\},\{4\}\}$ we have that 1+1+3=5 as desired.

- We will now demonstrate this reduction on (1, 1, 3, 5).
- If we partition [4] as follows $\{\{1,2,3\},\{4\}\}$ we have that 1+1+3=5 as desired.
- Let y = (1 + 1, 1 + 1, 3 + 1, 5 + 1) be the input for STARS EQUITABLE 2-COLORING.

Figure: Is this graph equitably 2-colorable?

- We will now demonstrate this reduction on (1, 1, 3, 5). If we partition [4] as follows {{1, 2, 3}, {4}} we have that 1 + 1 + 3 = 5 as desired.
- Let y = (1 + 1, 1 + 1, 3 + 1, 5 + 1) be the input for STARS EQUITABLE 2-COLORING.

Figure: Is this graph equitably 2-colorable?

• Now suppose that we are given the *n*-tuple (1, 1, 3, 5) and the following coloring *f* for the graph *G*.

• Now suppose that we are given the *n*-tuple (1, 1, 3, 5) and the following coloring *f* for the graph *G*.

• We want to find a partion {*A*, *B*} of [4] such that

$$\sum_{i\in A}m_i=\sum_{j\in B}m_j.$$

• We let A_i and B_i be the partite set of G_i of size 1 and $m_i + 1$ respectively.

- We let A_i and B_i be the partite set of G_i of size 1 and m_i + 1 respectively.
- Let $A = \{i \in [4] : f^{-1}(B_i) = \{1\}\} = \{1, 2, 3\}$ and $B = [n] - A = \{4\}.$

- We let A_i and B_i be the partite set of G_i of size 1 and m_i + 1 respectively.
- Let $A = \{i \in [4] : f^{-1}(B_i) = \{1\}\} = \{1, 2, 3\}$ and $B = [n] - A = \{4\}.$
- We then have that

$$4+5=9=|f^{-1}(1)|=\sum_{i\in A}|B_i|+\sum_{j\in B}|A_j|=1+\sum_{i\in A}(m_i+1)=4+\sum_{i\in A}m_i$$

- We let A_i and B_i be the partite set of G_i of size 1 and m_i + 1 respectively.
- Let $A = \{i \in [4] : f^{-1}(B_i) = \{1\}\} = \{1, 2, 3\}$ and $B = [n] - A = \{4\}.$
- We then have that

$$4+5 = 9 = |f^{-1}(1)| = \sum_{i \in A} |B_i| + \sum_{j \in B} |A_j| = 1 + \sum_{i \in A} (m_i + 1) = 4 + \sum_{i \in A} m_i$$
$$4+5 = 9 = |f^{-1}(2)| = \sum_{i \in A} |A_i| + \sum_{j \in B} |B_j| = 3 + \sum_{j \in B} (m_j + 1) = 4 + \sum_{j \in B} m_j.$$

Equitable 2-choosability

Theorem (Kaul, Mudrock, and W. (2020))

Let $G = K_{1,m_1} + K_{1,m_2}$ where $1 \le m_1 \le m_2$. *G* is equitably 2-choosable if and only if $m_2 - m_1 \le 1$ and $m_1 + m_2 \le 15$.

Equitable 2-choosability

Theorem (Kaul, Mudrock, and W. (2020))

Let $G = K_{1,m_1} + K_{1,m_2}$ where $1 \le m_1 \le m_2$. G is equitably 2-choosable if and only if $m_2 - m_1 \le 1$ and $m_1 + m_2 \le 15$.

Theorem (Kaul, Mudrock, and W. (2020))

Suppose that $n, m \in \mathbb{N}$, $n \ge 2$, and that $G = \sum_{i=1}^{n} K_{1,m}$. When n is odd, G is equitably 2-choosable if and only if $m \le 2$. When n is even, G is equitably 2-choosable if and only if $m \le 7$.

Equitable 2-choosability

Theorem (Kaul, Mudrock, and W. (2020))

Let $G = K_{1,m_1} + K_{1,m_2}$ where $1 \le m_1 \le m_2$. G is equitably 2-choosable if and only if $m_2 - m_1 \le 1$ and $m_1 + m_2 \le 15$.

Theorem (Kaul, Mudrock, and W. (2020))

Suppose that $n, m \in \mathbb{N}$, $n \ge 2$, and that $G = \sum_{i=1}^{n} K_{1,m}$. When n is odd, G is equitably 2-choosable if and only if $m \le 2$. When n is even, G is equitably 2-choosable if and only if $m \le 7$.

Question

Suppose that $n \ge 2$. Are there only finitely many equitably 2-choosable graphs (up to isomorphism) that are the disjoint union of n stars?

Equitable 2-Choosability of the Disjoint Union of 2 Stars

Theorem (Kaul, Mudrock, and W. (2020))

Let $G = K_{1,m_1} + K_{1,m_2}$ where $1 \le m_1 \le m_2$. *G* is equitably 2-choosable if and only if $m_2 - m_1 \le 1$ and $m_1 + m_2 \le 15$.

Equitable 2-Choosability of the Disjoint Union of 2 Stars

Theorem (Kaul, Mudrock, and W. (2020))

Let $G = K_{1,m_1} + K_{1,m_2}$ where $1 \le m_1 \le m_2$. G is equitably 2-choosable if and only if $m_2 - m_1 \le 1$ and $m_1 + m_2 \le 15$.

We need to show the following

• If $m_2 - m_1 > 1$ or $m_1 + m_2 > 15$ then *G* is not equitably 2-choosable.

Equitable 2-Choosability of the Disjoint Union of 2 Stars

Theorem (Kaul, Mudrock, and W. (2020))

Let $G = K_{1,m_1} + K_{1,m_2}$ where $1 \le m_1 \le m_2$. G is equitably 2-choosable if and only if $m_2 - m_1 \le 1$ and $m_1 + m_2 \le 15$.

We need to show the following

- If $m_2 m_1 > 1$ or $m_1 + m_2 > 15$ then *G* is not equitably 2-choosable.
- If $m_2 m_1 \le 1$ and $m_1 + m_2 \le 15$ then *G* is equitably 2-choosable.

Figure: Is this graph equitably L-colorable?

Figure: Is this graph equitably *L*-colorable?

Figure: Is this graph equitably *L*-colorable?

Figure: Is this graph equitably L-colorable?

Figure: Is this graph equitably *L*-colorable?

Figure: Is this graph equitably L-colorable?

Figure: Is this graph equitably *L*-colorable?

Figure: Is this graph equitably *L*-colorable?

Figure: Is this graph equitably *L*-colorable?
Consider the following example:

Figure: Is this graph equitably *L*-colorable?

Tim Wagstrom

The Other Direction

• We now need to show that if $m_2 - m_1 \le 1$ and $m_1 + m_2 \le 15$ then *G* is equitably 2-choosable.

The Other Direction

 We now need to show that if m₂ − m₁ ≤ 1 and m₁ + m₂ ≤ 15 then G is equitably 2-choosable.

Lemma

Let $G = G_1 + G_2$ where both G_1 and G_2 are copies of $K_{1,m}$ such that $m \in [7]$. Suppose the bipartition of G_1 is $\{w_0\}$, $A = \{w_1, \ldots, w_m\}$, and the bipartition of G_2 is $\{u_0\}$, $B = \{u_1, \ldots, u_m\}$. If L is a 2-assignment for G such that $L(w_0) \cap L(u_0) = \emptyset$, then G is equitably L-colorable.

The Other Direction

 We now need to show that if m₂ − m₁ ≤ 1 and m₁ + m₂ ≤ 15 then G is equitably 2-choosable.

Lemma

Let $G = G_1 + G_2$ where both G_1 and G_2 are copies of $K_{1,m}$ such that $m \in [7]$. Suppose the bipartition of G_1 is $\{w_0\}$, $A = \{w_1, \ldots, w_m\}$, and the bipartition of G_2 is $\{u_0\}$, $B = \{u_1, \ldots, u_m\}$. If L is a 2-assignment for G such that $L(w_0) \cap L(u_0) = \emptyset$, then G is equitably L-colorable.

Lemma

Let $G = K_{1,m} + K_{1,m}$ where $m \in [7]$. Then G is equitably 2-choosable.

• What do we do when we have $K_{1,m} + K_{1,m+1}$?

Tim Wagstrom

• What do we do when we have $K_{1,m} + K_{1,m+1}$?

• What do we do when we have $K_{1,m} + K_{1,m+1}$?

Suppose that $n, m \in \mathbb{N}$, $n \ge 2$, and that $G = \sum_{i=1}^{n} K_{1,m}$. When n is odd, G is equitably 2-choosable if and only if $m \le 2$. When n is even, G is equitably 2-choosable if and only if $m \le 7$.

Suppose that $n, m \in \mathbb{N}$, $n \ge 2$, and that $G = \sum_{i=1}^{n} K_{1,m}$. When n is odd, G is equitably 2-choosable if and only if $m \le 2$. When n is even, G is equitably 2-choosable if and only if $m \le 7$.

• The odd case is easy.

Suppose that $n, m \in \mathbb{N}$, $n \ge 2$, and that $G = \sum_{i=1}^{n} K_{1,m}$. When n is odd, G is equitably 2-choosable if and only if $m \le 2$. When n is even, G is equitably 2-choosable if and only if $m \le 7$.

- The odd case is easy.
- For the even case when m ≥ 8 we use a list assignment similar to K_{1,8} + K_{1,8}.

Suppose that $n, m \in \mathbb{N}$, $n \ge 2$, and that $G = \sum_{i=1}^{n} K_{1,m}$. When n is odd, G is equitably 2-choosable if and only if $m \le 2$. When n is even, G is equitably 2-choosable if and only if $m \le 7$.

- The odd case is easy.
- For the even case when m ≥ 8 we use a list assignment similar to K_{1,8} + K_{1,8}.
- When $m \le 7$ we divide the stars into pairs and color the pairs.

Let $k \in \mathbb{N}$ and $m_1 \le m_2$. If $m_2 \le \lceil (m_2 + m_1 + 2)/k \rceil (k - 1) - 1$ and $m_1 + m_2 \le 15 + \lceil (m_2 + m_1 + 2)/k \rceil (k - 2)$ then $K_{1,m_1} + K_{1,m_2}$ is equitably k-choosable. • What happens if $m_2 > \lceil (m_1 + m_2 + 2)/k \rceil (k - 1) - 1?$

• What happens if $m_2 > \lceil (m_1 + m_2 + 2)/k \rceil (k - 1) - 1?$

Lemma

If $m_2 > \lceil (m_2 + m_1 + 2)/k \rceil (k - 1) - 1$ then G is not equitably *k*-choosable

• recall the second condition

$$m_1 + m_2 \leq 15 + \lceil (m_1 + m_2 + 2)/k \rceil (k - 2).$$

Improving the Second Condition

recall the second condition

$$m_1 + m_2 \leq 15 + \lceil (m_1 + m_2 + 2)/k \rceil (k - 2).$$

Proposition

 $K_{1,8} + K_{1,9(k-1)-1}$ is equitably k-choosable for all $k \ge 3$

Improving the Second Condition

recall the second condition

$$m_1 + m_2 \leq 15 + \lceil (m_1 + m_2 + 2)/k \rceil (k - 2).$$

Proposition

 $K_{1,8} + K_{1,9(k-1)-1}$ is equitably k-choosable for all $k \ge 3$

$$egin{aligned} 8+9(k-1)-1&\leq 15+\lceil(8+9(k-1)-1+2)/k
ceil(k-2)\ 9(k-1)+7&\leq 15+9(k-2)\ 9k-2&\leq 9k-3 \end{aligned}$$

Improving the Second Condition cont.

recall the second condition

$$m_1 + m_2 \leq 15 + \lceil (m_1 + m_2 + 2)/k \rceil (k - 2)$$

Proposition

 $K_{1,(k-1)(k^3-k+2)} + K_{1,k^3}$ is not equitably k-choosable for all $k \ge 2$.

Improving the Second Condition cont.

recall the second condition

$$m_1 + m_2 \le 15 + \lceil (m_1 + m_2 + 2)/k \rceil (k - 2)$$

Proposition

 $K_{1,(k-1)(k^3-k+2)} + K_{1,k^3}$ is not equitably k-choosable for all $k \ge 2$.

Proof of Equitable k-Choosability

Process

 ϵ -greedy process:

Tim Wagstrom

Process

 ϵ -greedy process:

- Input: a graph $G = G_1 + G_2$ where G_i is a copy of K_{1,m_i} for
 - $i \in [2]$, and a k-assignment L where $k \geq 3$.

Process

 ϵ -greedy process:

- Input: a graph $G = G_1 + G_2$ where G_i is a copy of K_{1,m_i} for $i \in [2]$, and a k-assignment L where $k \ge 3$.
- Output: G_ε where G_ε is an induced subgraph of G, a list assignment L_ε for G_ε, and a partial L-coloring g_ε of G that colors the vertices in V(G) − V(G_ε).

Process

 ϵ -greedy process:

- Input: a graph $G = G_1 + G_2$ where G_i is a copy of K_{1,m_i} for $i \in [2]$, and a k-assignment L where $k \ge 3$.
- Output: G_ε where G_ε is an induced subgraph of G, a list assignment L_ε for G_ε, and a partial L-coloring g_ε of G that colors the vertices in V(G) − V(G_ε).
- We use this to justify the existence of the extremal choice for the partial list colorings.

• We will demonstrate how the *e*-greedy process works with the following example.

• We will demonstrate how the *e*-greedy process works with the following example.

 We will demonstrate how the ε-greedy process works with the following example.

 We will demonstrate how the ε-greedy process works with the following example.

• We want a partial coloring that minimizes the difference between the uncolored vertices in each star.

- We want a partial coloring that minimizes the difference between the uncolored vertices in each star.
- This extremal choice lets us apply the previous theorem to help finish this coloring.

Questions

• Questions?

Question

Suppose that $n \ge 2$. For which $k, m_1, m_2, ..., m_n \in \mathbb{N}$ is $\sum_{i=1}^{n} K_{1,m_i}$ equitably *k*-choosable?

Question

Is STARS EQUITABLE 2-CHOOSABLITY NP-hard?

Question

Suppose that $n \ge 2$. Are there only finitely many equitably 2-choosable graphs (up to isomorphism) that are the disjoint union of n stars?