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Classical Coloring

A proper k -coloring of a graph G is a labeling
f : V (G)→ S, where |S| = k and f (u) 6= f (v) whenever u
and v are adjacent in G.
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The chromatic number of a graph G, denoted χ(G), is
the smallest k such that G has a proper k -coloring.

For a color c ∈ S, the color class of c, denoted by f−1(c),
is the set of vertices to which f assigns the color c.

Note that the color classes are independent sets.
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Equitable Coloring

An equitable k -coloring of a graph G is a proper
k -coloring of G such that the sizes of the color classes
differ by at most one.

Note that for an equitable k -coloring f of a graph G,
b|V (G)|/kc ≤ |f−1(c)| ≤ d|V (G)|/ke for each color c.

Figure: Is G = K3,3 equitably 4-colorable?
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Figure: Is G = K3,3 equitably 4-colorable? Yes. We have that
b6/4c = 1 and d6/4e = 2.

Note that K3,3 is equitably 2-colorable but not equitably
3-colorable.
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Important Theorems and Conjectures for Equitable
Coloring

Theorem (Hajnal and Szemeredi(1970))

Every graph G has an equitable k-coloring when k ≥ ∆(G) + 1.

Conjecture (Chen, Lih, and Wu (1994))

A connected graph G is equitably ∆(G)-colorable if it is
different from Km, C2m+1, and K2m+1,2m+1.

Theorem (Yap and Zhang (1997))

Suppose that G1,G2 . . .Gn are pairwise vertex disjoint graphs
and G =

∑n
i=1 Gi . If Gi has an equitable k-coloring for all

i = 1,2, . . . ,n then G has an equitable k-coloring.
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List Coloring

A list assignment L for a graph G assigns each v ∈ V (G)
a list L(v) of available colors.

{1}

{1,4}

{1,2,3}

{2,3}

A proper L-coloring of G is a proper coloring f of G such
that f (v) ∈ L(v) for each v ∈ V (G).
The palette of a list assignment L is L =

⋃
v∈V (G) L(v)

Tim Wagstrom Equitable Choosability of the Disjoint Union of Stars



6/53

List Coloring

A list assignment L for a graph G assigns each v ∈ V (G)
a list L(v) of available colors.

{1}

{1,4}

{1,2,3}

{2,3}

A proper L-coloring of G is a proper coloring f of G such
that f (v) ∈ L(v) for each v ∈ V (G).
The palette of a list assignment L is L =

⋃
v∈V (G) L(v)

Tim Wagstrom Equitable Choosability of the Disjoint Union of Stars



6/53

List Coloring

A list assignment L for a graph G assigns each v ∈ V (G)
a list L(v) of available colors.

{1}

{1,4}

{1,2,3}

{2,3}

A proper L-coloring of G is a proper coloring f of G such
that f (v) ∈ L(v) for each v ∈ V (G).

The palette of a list assignment L is L =
⋃

v∈V (G) L(v)

Tim Wagstrom Equitable Choosability of the Disjoint Union of Stars



6/53

List Coloring

A list assignment L for a graph G assigns each v ∈ V (G)
a list L(v) of available colors.

{1}

{1,4}

{1,2,3}

{2,3}

A proper L-coloring of G is a proper coloring f of G such
that f (v) ∈ L(v) for each v ∈ V (G).
The palette of a list assignment L is L =

⋃
v∈V (G) L(v)

Tim Wagstrom Equitable Choosability of the Disjoint Union of Stars



7/53

List Coloring Terminology

If |L(v)| = k for each v ∈ V (G), then we say L is a
k -assignment for G.

We say G is k -choosable if a proper L-coloring of G exists
whenever L is a k -assignment for G.
The smallest k such that G is k -choosable is called the list
chromatic number of G, denoted χ`(G).
For example, the complete graph Kn is n-choosable.
Also, K2,4 is not 2-choosable.

{1,2,3,4}

{1,2,3,4} {1,2,3,4}

{1,2,3,4}

{1,2} {3,4}

{1,3} {1,4} {2,3} {2,4}
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Equitable List Coloring

In 2003, Kostochka, Pelsmajer, and West introduced a list
analogue of equitable coloring called equitable
choosability.

If G is a graph and L is a k -assignemt for G, a proper
L-coloring of G is called an equitable L-coloring of G if the
size of each color class is at most d|V (G)|/ke.

{1,2,3}

{1,2,3}{1,2,3}{1,2,3} {1,2,3} {1,2,3} {4,5,6}
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Equitable List Coloring

In 2003, Kostochka, Pelsmajer, and West introduced a list
analogue of equitable coloring called equitable
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If G is a graph and L is a k -assignemt for G, a proper
L-coloring of G is called an equitable L-coloring of G if the
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1

222 3 3 6

Unlike equitable coloring, our only concern in equitable
choosability is not overusing any color.
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Equitable Choosability Conjectures

Conjecture (Kostochka, Pelsmajer, and West (2003))

Every graph G is equitably k-choosable when k ≥ ∆(G) + 1.

Conjecture (Kostochka, Pelsmajer, and West (2003))
A connected graph G is equitably k-choosable for each
k ≥ ∆(G) if it is different from Km, C2m+1, and K2m+1,2m+1.
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Results for k < ∆(G)

Theorem (Kostochka, Pelsmajer, and West (2003))

If G is a forest and k ≥ 1 + ∆(G)/2, then G is equitably
k-choosable. Also for all D there is a tree with maximum
degree at most D that is not equitably dD/2e-choosable.

Conjecture (Kaul, Mudrock, and Pelsmajer (2018))

Let T (G) denote the total graph of G. For every graph G, T (G)
is equitably k-choosable for each
k ≥ max{χ`(T (G)),∆(T (G))/2 + 2}.
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Characterizations

Theorem (Mudrock, Chase, Kadera, Thornburgh, W. (2018))
K1,m is equitably k-choosable if and only if
m ≤ d(m + 1)/ke(k − 1).

Theorem (Mudrock, Chase, Kadera, Thornburgh, W. (2018))
K2,m is equitably k-choosable if and only if
m ≤ d(m + 2)/ke(k − 1).

Tim Wagstrom Equitable Choosability of the Disjoint Union of Stars



15/53

Characterizations

Theorem (Mudrock, Chase, Kadera, Thornburgh, W. (2018))
K1,m is equitably k-choosable if and only if
m ≤ d(m + 1)/ke(k − 1).

Theorem (Mudrock, Chase, Kadera, Thornburgh, W. (2018))
K2,m is equitably k-choosable if and only if
m ≤ d(m + 2)/ke(k − 1).

Tim Wagstrom Equitable Choosability of the Disjoint Union of Stars



16/53

Equitable Choosability of the Disjoint Union of Graphs

Theorem (Yap and Zhang (1997))

Suppose that G1,G2 . . .Gn are pairwise vertex disjoint graphs
and G =

∑n
i=1 Gi . If Gi has an equitable k-coloring for all

i = 1,2, . . . ,n then G has an equitable k-coloring.

Question: Does this hold for equitable choosability?

{1,2,3}

{1,2,3} {1,2,3} {1,2,3}{1,2,3}{1,2,3}{1,2,3}

{1,2,3}

{1,2,3}

Figure: Both K1,6 and K1,1 are equitably 3-choosable.
However, K1,6 + K1,1 is not equitably 3-choosable
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Motivating Question

Question
Suppose that n ≥ 2. For which k ,m1,m2, . . . ,mn ∈ N is∑n

i=1 K1,mi equitably k-choosable?
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Complexity

STARS EQUITABLE 2-COLORING:
Instance: An n-tuple (m1, . . . ,mn) such that mi ∈ N for each
i ∈ [n].
Question: Is

∑n
i=1 K1,mi equitably 2-colorable?

Theorem (Kaul, Mudrock, and W. (2020))
STARS EQUITABLE 2-COLORING is NP-complete.

Question: Why do we care about equitable 2-colorability?
If a graph is not equitably 2-colorable then it is also not
equitably 2-choosable.
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STARS EQUITABLE 2-CHOOSABLITY

STARS EQUITABLE 2-CHOOSABLITY:
Instance: An n-tuple (m1, . . . ,mn) such that mi ∈ N for each
i ∈ [n].
Question: Is

∑n
i=1 K1,mi equitably 2-choosable?

Question
Is STARS EQUITABLE 2-CHOOSABLITY NP-hard?
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Proof of Complexity for STARS EQUITABLE
2-COLORING

It is easy to show that STARS EQUITABLE 2-COLORING
is in NP.

We use the NP-complete decision problem
PARTITION:

Instance: An n-tuple (m1, . . . ,mn) such that mi ∈ N for each
i ∈ [n].
Question: Is there a partition {A,B} of the set [n] such that∑

i∈A mi =
∑

j∈B mj?

Lemma
There is a partition {A,B} of the set [n] such that∑

i∈A mi =
∑

j∈B mj if and only if G =
∑n

i=1 K1,mi+1 is equitably
2-colorable.
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Proof of Complexity for STARS EQUITABLE
2-COLORING cont.

We will now demonstrate this reduction on (1,1,3,5).

If we partition [4] as follows {{1,2,3}, {4}} we have that
1 + 1 + 3 = 5 as desired.
Let y = (1 + 1,1 + 1,3 + 1,5 + 1) be the input for STARS
EQUITABLE 2-COLORING.

Figure: Is this graph equitably 2-colorable?
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Proof of Complexity for STARS EQUITABLE
2-COLORING cont.

We will now demonstrate this reduction on (1,1,3,5). If we
partition [4] as follows {{1,2,3}, {4}} we have that
1 + 1 + 3 = 5 as desired.
Let y = (1 + 1,1 + 1,3 + 1,5 + 1) be the input for STARS
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1

2 2 2 2 2 2

2

1 1

2

1 1

2

1 1 1 1

Figure: Is this graph equitably 2-colorable?
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Proof of Complexity for STARS EQUITABLE
2-COLORING cont.

Now suppose that we are given the n-tuple (1,1,3,5) and
the following coloring f for the graph G.

1

2 2 2 2 2 2

2

1 1

2

1 1

2

1 1 1 1

We want to find a partion {A,B} of [4] such that∑
i∈A

mi =
∑
j∈B

mj .
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Proof of Complexity cont.

1

2 2 2 2 2 2

2

1 1

2

1 1

2

1 1 1 1

We let Ai and Bi be the partite set of Gi of size 1 and
mi + 1 respectively.
Let A = {i ∈ [4] : f−1(Bi) = {1}} = {1,2,3}
and B = [n]− A = {4}.
We then have that

4+5 = 9 = |f−1(1)| =
∑
i∈A

|Bi |+
∑
j∈B

|Aj | = 1+
∑
i∈A

(mi +1) = 4+
∑
i∈A

mi

4+5 = 9 = |f−1(2)| =
∑
i∈A

|Ai |+
∑
j∈B

|Bj | = 3+
∑
j∈B

(mj +1) = 4+
∑
j∈B

mj .
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Equitable 2-choosability

Theorem (Kaul, Mudrock, and W. (2020))
Let G = K1,m1 + K1,m2 where 1 ≤ m1 ≤ m2. G is equitably
2-choosable if and only if m2 −m1 ≤ 1 and m1 + m2 ≤ 15.

Theorem (Kaul, Mudrock, and W. (2020))

Suppose that n,m ∈ N, n ≥ 2, and that G =
∑n

i=1 K1,m.
When n is odd, G is equitably 2-choosable if and only if m ≤ 2.
When n is even, G is equitably 2-choosable if and only if m ≤ 7.

Question
Suppose that n ≥ 2. Are there only finitely many equitably
2-choosable graphs (up to isomorphism) that are the disjoint
union of n stars?
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Equitable 2-Choosability of the Disjoint Union of 2
Stars

Theorem (Kaul, Mudrock, and W. (2020))
Let G = K1,m1 + K1,m2 where 1 ≤ m1 ≤ m2. G is equitably
2-choosable if and only if m2 −m1 ≤ 1 and m1 + m2 ≤ 15.

We need to show the following
If m2 −m1 > 1 or m1 + m2 > 15 then G is not equitably
2-choosable.
If m2 −m1 ≤ 1 and m1 + m2 ≤ 15 then G is equitably
2-choosable.
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m2 −m1 > 1

Consider the following example:

{1,2}

{1,2}{1,2}{1,2}{1,2}{1,2}{1,2}

{1,2}

{1,2}{1,2}{1,2}{1,2}

Figure: Is this graph equitably L-colorable?
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m2 −m1 > 1

Consider the following example:

1

2 2 2 2 2 2

{1,2}

{1,2}{1,2}{1,2}{1,2}

Figure: Is this graph equitably L-colorable?
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m2 −m1 > 1

Consider the following example:

1

2 2 2 2 2 2

1

{1,2}{1,2}{1,2}{1,2}

Figure: Is this graph equitably L-colorable?
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m1 + m2 > 15

Consider the following example:

{3,4}

{1,3}
{1,3}
{1,4}
{1,4}
{2,3}
{2,3}
{2,4}
{2,4}
{3,4}

{1,2}

{1,2}
{1,2}
{1,2}
{1,2}
{1,2}
{1,2}
{1,2}
{1,2}
{1,2}
{1,2}

Figure: Is this graph equitably L-colorable?
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m1 + m2 > 15

Consider the following example:

{3,4}

{1,3}
{1,3}
{1,4}
{1,4}
{2,3}
{2,3}
{2,4}
{2,4}
{3,4}

2

1
1
1
1
1
1
1
1
1
1

Figure: Is this graph equitably L-colorable?
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m1 + m2 > 15
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1
1
1
1
1
1
1
1
1
1
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m1 + m2 > 15

Consider the following example:

3

1
1
{1,4}
{1,4}
{2,3}
{2,3}
{2,4}
{2,4}
{3,4}

2

1
1
1
1
1
1
1
1
1
1

Figure: Is this graph equitably L-colorable?
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m1 + m2 > 15

Consider the following example:

4

{1,3}
{1,3}
{1,4}
{1,4}
{2,3}
{2,3}
{2,4}
{2,4}
{3,4}

2

1
1
1
1
1
1
1
1
1
1

Figure: Is this graph equitably L-colorable?
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m1 + m2 > 15

Consider the following example:

4

{1,3}
{1,3}
1
1
{2,3}
{2,3}
{2,4}
{2,4}
{3,4}

2

1
1
1
1
1
1
1
1
1
1

Figure: Is this graph equitably L-colorable?
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The Other Direction

We now need to show that if m2 −m1 ≤ 1 and
m1 + m2 ≤ 15 then G is equitably 2-choosable.

Lemma
Let G = G1 + G2 where both G1 and G2 are copies of K1,m
such that m ∈ [7].Suppose the bipartition of G1 is{w0},
A = {w1, . . . ,wm}, and the bipartition of G2 is{u0},
B = {u1, . . . ,um}. If L is a 2-assignment for G such that
L(w0) ∩ L(u0) = ∅, then G is equitably L-colorable.

Lemma
Let G = K1,m + K1,m where m ∈ [7]. Then G is equitably
2-choosable.
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The Case of K1,m + K1,m+1

What do we do when we have K1,m + K1,m+1?

u0

u1 u2 u3 u4 u5

w0

w1 w2 w3 w4

{1,2}

{1,2}{1,2}{1,2}{1,2}{1,2}

{1,2}

{1,2}{1,2}{1,2}{1,2}

Tim Wagstrom Equitable Choosability of the Disjoint Union of Stars



38/53

The Case of K1,m + K1,m+1

What do we do when we have K1,m + K1,m+1?

u0

u1 u2 u3 u4 u5

w0

w1 w2 w3 w4

{1,2}

{1,2}{1,2}{1,2}{1,2}{1,2}

{1,2}

{1,2}{1,2}{1,2}{1,2}

Tim Wagstrom Equitable Choosability of the Disjoint Union of Stars



39/53

The Case of K1,m + K1,m+1

What do we do when we have K1,m + K1,m+1?

u0

u1 u2 u3 u4 u5

w0

w1 w2 w3 w4

1

2 2 2 2 {1,2}

2

1 1 1 1
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The Case of K1,m + K1,m+1

What do we do when we have K1,m + K1,m+1?

u0

u1 u2 u3 u4 u5

w0

w1 w2 w3 w4

1

2 2 2 2 {2}

2

1 1 1 1
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The Case of K1,m + K1,m+1

What do we do when we have K1,m + K1,m+1?

u0

u1 u2 u3 u4 u5

w0

w1 w2 w3 w4

1

2 2 2 2 2

2

1 1 1 1
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The Equitable 2-choosability of n Stars

Theorem (Kaul, Mudrock, and W. (2020))

Suppose that n,m ∈ N, n ≥ 2, and that G =
∑n

i=1 K1,m. When n
is odd, G is equitably 2-choosable if and only if m ≤ 2. When n
is even, G is equitably 2-choosable if and only if m ≤ 7.

The odd case is easy.
For the even case when m ≥ 8 we use a list assignment
similar to K1,8 + K1,8.
When m ≤ 7 we divide the stars into pairs and color the
pairs.
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Equitable k-Choosability

Theorem (Kaul, Mudrock, and W. (2020))
Let k ∈ N and m1 ≤ m2.
If m2 ≤ d(m2 + m1 + 2)/ke(k − 1)− 1
and m1 + m2 ≤ 15 + d(m2 + m1 + 2)/ke(k − 2) then
K1,m1 + K1,m2 is equitably k-choosable.
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Necessity of the First Condition

What happens if m2 > d(m1 + m2 + 2)/ke(k − 1)− 1?

Lemma
If m2 > d(m2 + m1 + 2)/ke(k − 1)− 1 then G is not equitably
k-choosable
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Improving the Second Condition

recall the second condition

m1 + m2 ≤ 15 + d(m1 + m2 + 2)/ke(k − 2).

Proposition
K1,8 + K1,9(k−1)−1 is equitably k-choosable for all k ≥ 3

8 + 9(k − 1)− 1 ≤ 15 + d(8 + 9(k − 1)− 1 + 2)/ke(k − 2)

9(k − 1) + 7 ≤ 15 + 9(k − 2)

9k − 2 ≤ 9k − 3
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Improving the Second Condition cont.

recall the second condition

m1 + m2 ≤ 15 + d(m1 + m2 + 2)/ke(k − 2).

Proposition
K1,(k−1)(k3−k+2) + K1,k3 is not equitably k-choosable for all
k ≥ 2.

k4 − k2 + 3k − 2 ≤ 15 +

⌈
k3 + (k − 1)(k3 − k + 2) + 2

k

⌉
(k − 2)

k4 − k2 + 3k − 2 ≤ 15 + (k3 − k + 1)(k − 2)

k4 − k2 + 3k − 2 ≤ k4 − 2k3 − k2 + 3k + 13

2k3 ≤ 15
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Improving the Second Condition cont.

recall the second condition

m1 + m2 ≤ 15 + d(m1 + m2 + 2)/ke(k − 2).

Proposition
K1,(k−1)(k3−k+2) + K1,k3 is not equitably k-choosable for all
k ≥ 2.

k4 − k2 + 3k − 2 ≤ 15 +

⌈
k3 + (k − 1)(k3 − k + 2) + 2

k

⌉
(k − 2)

k4 − k2 + 3k − 2 ≤ 15 + (k3 − k + 1)(k − 2)

k4 − k2 + 3k − 2 ≤ k4 − 2k3 − k2 + 3k + 13

2k3 ≤ 15
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Proof of Equitable k -Choosability

Process
ε-greedy process:

Input: a graph G = G1 + G2 where Gi is a copy of K1,mi for
i ∈ [2], and a k-assignment L where k ≥ 3.

Output: Gε where Gε is an induced subgraph of G, a list
assignment Lε for Gε, and a partial L-coloring gε of G that colors
the vertices in V (G)− V (Gε).

We use this to justify the existence of the extremal choice
for the partial list colorings.
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Example of ε-greedy process

We will demonstrate how the ε-greedy process works with
the following example.

{2,3,4,5}

{1,2,3,4}
{1,2,3,4}
{1,2,3,4}
{2,3,4,6}
{2,3,4,6}
{1,4,5,6}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}
{1,3,4,6}
{1,3,4,6}
{1,3,4,6}
{2,3,4,5}
{2,3,4,6}
{2,3,4,6}
{1,2,4,5}
{1,2,4,5}
{1,2,4,5}
{1,2,4,5}
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Example of ε-greedy process

We will demonstrate how the ε-greedy process works with
the following example.

{2,3,4,5}

1
1
{1,2,3,4}
{2,3,4,6}
{2,3,4,6}
{1,4,5,6}

{1,2,3,4}

1
1

{1,3,4,6}
{1,3,4,6}
{1,3,4,6}
{2,3,4,5}
{2,3,4,6}
{2,3,4,6}
{1,2,4,5}
{1,2,4,5}

1
{1,2,4,5}
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Example of ε-greedy process

We will demonstrate how the ε-greedy process works with
the following example.

{2,3,4,5}

1
1
{2,3,4}
{2,3,4,6}
{2,3,4,6}
{4,5,6}

{2,3,4}

1
1

{3,4,6}
{3,4,6}
{3,4,6}

{2,3,4,5}
{2,3,4,6}
{2,3,4,6}
{2,4,5}
{2,4,5}

1
{2,4,5}
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Example of ε-greedy process

We will demonstrate how the ε-greedy process works with
the following example.

{2,3,4}

1
1
{2,3,4}
{2,3,4,6}
{2,3,4,6}
5 {2,3,4}

1
1

{3,4,6}
{3,4,6}
{3,4,6}

5
{2,3,4,6}
{2,3,4,6}

5
5
1
5

Tim Wagstrom Equitable Choosability of the Disjoint Union of Stars



52/53

The Extermal choice

We want a partial coloring that minimizes the difference
between the uncolored vertices in each star.

This extremal choice lets us apply the previous theorem to
help finish this coloring.
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Questions

Questions?

Question
Suppose that n ≥ 2. For which k ,m1,m2, . . . ,mn ∈ N is∑n

i=1 K1,mi equitably k-choosable?

Question
Is STARS EQUITABLE 2-CHOOSABLITY NP-hard?

Question
Suppose that n ≥ 2. Are there only finitely many equitably
2-choosable graphs (up to isomorphism) that are the disjoint
union of n stars?
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